Michael A Shook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8454306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature, 2017, 543, 411-415.	27.8	219
2	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	2.5	111
3	Cleaner burning aviation fuels can reduce contrail cloudiness. Communications Earth & Environment, 2021, 2, .	6.8	92
4	New insights into the column CH ₂ O/NO ₂ ratio as an indicator of nearâ€surface ozone sensitivity. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8885-8907.	3.3	87
5	Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions. Energy & Fuels, 2015, 29, 2591-2600.	5.1	71
6	Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 2019, 100, 1511-1528.	3.3	51
7	Factors that influence surface PM _{2.5} values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ. Atmospheric Chemistry and Physics, 2014, 14, 2139-2153.	4.9	45
8	Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ. Elementa, 2020, 8, .	3.2	44
9	Airborne observations of bioaerosol over the Southeast United States using a Wideband Integrated Bioaerosol Sensor. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8506-8524.	3.3	40
10	Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033145.	3.3	36
11	Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031626.	3.3	35
12	High Temporal Resolution Satellite Observations of Fire Radiative Power Reveal Link Between Fire Behavior and Aerosol and Gas Emissions. Geophysical Research Letters, 2020, 47, e2020GL090707.	4.0	30
13	Diurnal Climatology of Planetary Boundary Layer Height Over the Contiguous United States Derived From AMDAR and Reanalysis Data. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032803.	3.3	28
14	Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index. Atmospheric Measurement Techniques, 2021, 14, 4517-4542.	3.1	28
15	Retrievals of cloud droplet size from the research scanning polarimeter data: Validation using in situ measurements. Remote Sensing of Environment, 2018, 210, 76-95.	11.0	26
16	Observational evidence for the convective transport of dust over the Central United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1306-1319.	3.3	23
17	Measurement report: Long-range transport patterns into the tropical northwest Pacific during the CAMP ² Ex aircraft campaign: chemical composition, size distributions, and the impact of convection. Atmospheric Chemistry and Physics, 2021, 21, 3777-3802.	4.9	22
18	A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms. Remote Sensing, 2019, 11, 498.	4.0	21

MICHAEL A SHOOK

#	Article	IF	CITATIONS
19	Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors. Atmospheric Chemistry and Physics, 2021, 21, 10499-10526.	4.9	20
20	Formaldehyde column density measurements as a suitable pathway to estimate nearâ€surface ozone tendencies from space. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13088-13112.	3.3	19
21	On Assessing ERA5 and MERRA2 Representations of Coldâ€Air Outbreaks Across the Gulf Stream. Geophysical Research Letters, 2021, 48, e2021GL094364.	4.0	19
22	An intercomparison of aerosol absorption measurements conducted during the SEAC ⁴ RS campaign. Aerosol Science and Technology, 2018, 52, 1012-1027.	3.1	17
23	Aerosol responses to precipitation along North American air trajectories arriving at Bermuda. Atmospheric Chemistry and Physics, 2021, 21, 16121-16141.	4.9	17
24	Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport. Scientific Data, 2017, 4, 170198.	5.3	15
25	Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART. Atmospheric Chemistry and Physics, 2021, 21, 831-851.	4.9	15
26	Atmospheric Carbon and Transport – America (ACTâ€America) Data Sets: Description, Management, and Delivery. Earth and Space Science, 2021, 8, e2020EA001634.	2.6	15
27	Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range. Atmospheric Measurement Techniques, 2015, 8, 4755-4771.	3.1	14
28	Development and characterization of a high-efficiency, aircraft-based axial cyclone cloud water collector. Atmospheric Measurement Techniques, 2018, 11, 5025-5048.	3.1	14
29	Aircraft engine particulate matter emissions from sustainable aviation fuels: Results from ground-based measurements during the NASA/DLR campaign ECLIF2/ND-MAX. Fuel, 2022, 325, 124764.	6.4	13
30	Total organic carbon and the contribution from speciated organics in cloud water: airborne data analysis from the CAMP ² Ex field campaign. Atmospheric Chemistry and Physics, 2021, 21, 14109-14129.	4.9	10
31	Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	10
32	Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: comparison of measurement techniques for mass, number, and size. Atmospheric Measurement Techniques, 2022, 15, 3223-3242.	3.1	10
33	Case study of stratospheric intrusion above Hampton, Virginia: Lidar-observation and modeling analysis. Atmospheric Environment, 2021, 259, 118498.	4.1	9
34	Cold Air Outbreaks Promote New Particle Formation Off the U.S. East Coast. Geophysical Research Letters, 2022, 49, .	4.0	9
35	Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic. Atmospheric Chemistry and Physics, 2022, 22, 8299-8319.	4.9	9
36	Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings. Journals of the Atmospheric Sciences, 2022, 79, 73-100.	1.7	8

#	Article	IF	CITATIONS
37	New in situ aerosol hyperspectral optical measurements over 300–700 nm – PartÂ1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise. Atmospheric Measurement Techniques, 2021, 14, 695-713.	3.1	6
38	Particulate Oxalateâ€Toâ€Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations. Geophysical Research Letters, 2021, 48, e2021GL096520.	4.0	6
39	Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks. Geophysical Research Letters, 2022, 49, .	4.0	6
40	Coupling an online ion conductivity measurement with the particle-into-liquid sampler: Evaluation and modeling using laboratory and field aerosol data. Aerosol Science and Technology, 2020, 54, 1542-1555.	3.1	5
41	New in situ aerosol hyperspectral optical measurements over 300–700 nm – PartÂ2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise. Atmospheric Measurement Techniques, 2021, 14, 715-736.	3.1	5
42	Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer. Atmospheric Measurement Techniques, 2022, 15, 1373-1394.	3.1	5
43	Polarimeter + Lidar–Derived Aerosol Particle Number Concentration. Frontiers in Remote Sensing, 2022, 3, .	3.5	5
44	North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories. Atmospheric Chemistry and Physics, 2022, 22, 2795-2815.	4.9	4
45	Aircraft Engine Particulate Matter and Gaseous Emissions from Sustainable Aviation Fuels: Results from Ground-Based Measurements During the Nasa/Dlr Campaign Eclif2/Nd-Max. SSRN Electronic Journal, 0, , .	0.4	3
46	Relationships between supermicrometer particle concentrations and cloud water sea salt and dust concentrations: analysis of MONARC and ACTIVATE data. Environmental Science Atmospheres, 2022, 2, 738-752.	2.4	3