Francoise Combes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8453961/publications.pdf

Version: 2024-02-01

631 papers

24,522 citations

7069 78 h-index 125 g-index

657 all docs

657 docs citations

657 times ranked

8341 citing authors

#	Article	IF	CITATIONS
1	Radial profiles of lensed $\langle i \rangle z \langle i \rangle$ $\hat{a}^{1}/4$ 1 galaxies on sub-kiloparsec scales. Astronomy and Astrophysics, 2022, 657, A25.	2.1	3
2	Virgo filaments. Astronomy and Astrophysics, 2022, 657, A9.	2.1	25
3	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2022, 659, A123.	2.1	14
4	Hidden in plain sight: UVIT and MUSE discovery of a large, diffuse star-forming galaxy. Astronomy and Astrophysics, 2022, 657, L10.	2.1	1
5	Non-star-forming molecular gas in the Abell 1367 intra-cluster multiphase orphan cloud. Astronomy and Astrophysics, 2022, 658, L5.	2.1	2
6	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2022, 659, A125.	2.1	15
7	Genesis of morpho-kinematic lopsidedness in minor merger of galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5878-5896.	1.6	9
8	Discovery of a Damped Lyı̂± Absorber Originating in a Spectacular Interacting Dwarf Galaxy Pair at $z = 0.026$. Astrophysical Journal Letters, 2022, 926, L33.	3.0	1
9	Unveiling the main sequence to starburst transition region with a sample of intermediate redshift luminous infrared galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2371-2388.	1.6	2
10	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2022, 659, A124.	2.1	13
11	H i Gas Playing Hide-and-seek around a Powerful FRI-type Quasar at z $\hat{a}^{1}/4$ 2.1. Astrophysical Journal Letters, 2022, 927, L24.	3.0	1
12	Search and analysis of giant radio galaxies with associated nuclei (SAGAN). Astronomy and Astrophysics, 2022, 660, A59.	2.1	7
13	Virgo Filaments. II. Catalog and First Results on the Effect of Filaments on Galaxy Properties. Astrophysical Journal, Supplement Series, 2022, 259, 43.	3.0	7
14	MALS SALT-NOT Survey of MIR-selected Powerful Radio-bright AGN at 0 < z < 3.5. Astrophysical Journal, 2022, 929, 108.	1.6	4
15	NOEMA observations support a recoiling black hole in 3C 186. Astronomy and Astrophysics, 2022, 661, L2.	2.1	5
16	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2022, 663, A104.	2.1	7
17	First discoveries and localizations of Fast Radio Bursts with MeerTRAP: real-time, commensal MeerKAT survey. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1961-1974.	1.6	8
18	ALMA Lensing Cluster Survey: ALMA-Herschel Joint Study of Lensed Dusty Star-forming Galaxies across z $3\% f$ 0.5 3% 6. Astrophysical Journal, 2022, 932, 77.	1.6	18

#	Article	IF	CITATIONS
19	Molecular gas along the old radio jets of the cluster-central typeÂ2 quasar IRASÂ09104+4109. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3796-3811.	1.6	9
20	Blind H i and OH Absorption Line Search: First Results with MALS and uGMRT Processed Using ARTIP. Astrophysical Journal, 2021, 907, 11.	1.6	20
21	ALMA 1.3 mm Survey of Lensed Submillimeter Galaxies Selected by Herschel: Discovery of Spatially Extended SMGs and Implications. Astrophysical Journal, 2021, 908, 192.	1.6	15
22	The Diverse Molecular Gas Content of Massive Galaxies Undergoing Quenching at z $\hat{a}^{1/4}$ 1. Astrophysical Journal Letters, 2021, 909, L11.	3.0	24
23	A Massive, Clumpy Molecular Gas Distribution and Displaced AGN in Zw 3146. Astrophysical Journal, 2021, 910, 53.	1.6	7
24	SEEDisCS. Astronomy and Astrophysics, 2021, 647, A156.	2.1	8
25	PKS 1830–211: OH and Hâ€T at <i>z</i> = 0.89 and the first MeerKAT UHF spectrum. Astronomy and Astrophysics, 2021, 648, A116.	2.1	12
26	CON-quest. Astronomy and Astrophysics, 2021, 649, A105.	2.1	30
27	The Cluster-central Compact Steep-spectrum Radio Galaxy 1321+045. Astrophysical Journal, 2021, 913, 105.	1.6	3
28	Molecular gas kinematics in the nuclear region of nearby Seyfert galaxies with ALMA. Astronomy and Astrophysics, 2021, 654, A24.	2.1	9
29	Remarkably high mass and velocity dispersion of molecular gas associated with a regular, absorption-selected type I quasar. Astronomy and Astrophysics, 2021, 651, A17.	2.1	4
30	A triple active galactic nucleus in the NGC 7733–7734 merging group. Astronomy and Astrophysics, 2021, 651, L9.	2.1	8
31	Physics of ULIRGs with MUSE and ALMA: The PUMA project. Astronomy and Astrophysics, 2021, 651, A42.	2.1	25
32	Evolution of Cold Gas at 2 < z < 5: A Blind Search for H i and OH Absorption Lines toward Mid-infrared Color-selected Radio-loud AGN. Astrophysical Journal, Supplement Series, 2021, 255, 28.	3.0	11
33	The Galaxy Activity, Torus, and Outflow Survey (GATOS). Astronomy and Astrophysics, 2021, 652, A98.	2.1	60
34	The Galaxy Activity, Torus, and Outflow Survey (GATOS). Astronomy and Astrophysics, 2021, 652, A99.	2.1	26
35	Molecular gas and star formation within 12 strong galactic bars observed with IRAM-30 m. Astronomy and Astrophysics, 2021, 654, A135.	2.1	6
36	SEEDisCS. Astronomy and Astrophysics, 2021, 654, A69.	2.1	3

#	Article	IF	CITATIONS
37	Two interacting galaxies hiding as one, revealed by MaNGA. Astronomy and Astrophysics, 2021, 653, A47.	2.1	5
38	Black hole feeding and star formation in NGC 1808. Astronomy and Astrophysics, 2021, 656, A60.	2.1	9
39	Fate of stellar bars in minor merger of galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3085-3100.	1.6	20
40	Double X/Peanut structures in barred galaxies – insights from an N-body simulation. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2203-2214.	1.6	2
41	ESOÂ137-002: a large spiral undergoing edge-on ram-pressure stripping with little star formation in the tail. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3938-3956.	1.6	9
42	Extensive Lensing Survey of Optical and Near-infrared Dark Objects (El Sonido): HST H-faint Galaxies behind 101 Lensing Clusters. Astrophysical Journal, 2021, 922, 114.	1.6	14
43	Gas and dust cooling along the major axis of M 33 (HerM33es). Astronomy and Astrophysics, 2020, 639, A61.	2.1	6
44	Cold molecular gas and PAH emission in the nuclear and circumnuclear regions of Seyfert galaxies. Astronomy and Astrophysics, 2020, 639, A43.	2.1	25
45	Molecular gas in CLASH brightest cluster galaxies at <i>z</i> â^¼ 0.2 – 0.9. Astronomy and Astrophysics, 2020, 640, A65.	2.1	17
46	AstroSat detection of Lyman continuum emission from a z = 1.42 galaxy. Nature Astronomy, 2020, 4, 1185-1194.	4.2	28
47	A molecular absorption line survey towards the AGN of Hydra-A. Monthly Notices of the Royal Astronomical Society, 2020, 496, 364-380.	1.6	15
48	The ram pressure stripped radio tails of galaxies in the Coma cluster. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4654-4673.	1.6	37
49	ALMA observations of CS in NGC 1068: chemistry and excitation. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5308-5329.	1.6	9
50	The effect of fluctuating fuzzy axion haloes on stellar dynamics: a stochastic model. Monthly Notices of the Royal Astronomical Society, 2020, 492, 877-894.	1.6	23
51	Molecular gas in distant brightest cluster galaxies. Astronomy and Astrophysics, 2020, 635, A32.	2.1	9
52	Environmental processing in cluster core galaxies at $\langle i \rangle z \langle j \rangle = 1.7$. Astronomy and Astrophysics, 2020, 635, L10.	2.1	13
53	Anisotropy of random motions of gas in Messier 33. Astronomy and Astrophysics, 2020, 639, A145.	2.1	5
54	A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO 420-G13 probes an elusive radio jet. Astronomy and Astrophysics, 2020, 633, A127.	2.1	18

#	Article	IF	CITATIONS
55	Near-infrared observations of the gas structure and kinematics in the circumnuclear region of NGC 1672. Astronomy and Astrophysics, 2020, 638, A36.	2.1	4
56	Molecular gas and star formation activity in luminous infrared galaxies in clusters at intermediate redshifts. Astronomy and Astrophysics, 2020, 640, A64.	2.1	11
57	Detection of deuterated molecules, but not of lithium hydride, in the $\langle i \rangle z \langle i \rangle = 0.89$ absorber toward PKS 1830â^'211. Astronomy and Astrophysics, 2020, 637, A7.	2.1	9
58	ALMA resolves the remarkable molecular jet and rotating wind in the extremely radio-quiet galaxy NGC 1377. Astronomy and Astrophysics, 2020, 640, A104.	2.1	19
59	Search and analysis of giant radio galaxies with associated nuclei (SAGAN). Astronomy and Astrophysics, 2020, 642, A153.	2.1	42
60	Massive molecular gas reservoir around the central AGN in the CARLA J1103 + 3449 cluster at $\langle i \rangle z \langle j \rangle = 1.44$. Astronomy and Astrophysics, 2020, 641, A22.	2.1	4
61	Search and analysis of giant radio galaxies with associated nuclei (SAGAN). Astronomy and Astrophysics, 2020, 643, A111.	2.1	11
62	MeerKAT HI commissioning observations of MHONGOOSE galaxy ESO 302-G014. Astronomy and Astrophysics, 2020, 643, A147.	2.1	10
63	A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). Astronomy and Astrophysics, 2020, 644, A161.	2.1	15
64	Exploring the hot gaseous halo around an extremely massive and relativistic jet launching spiral galaxy with <i>XMMâ°'Newton</i> . Monthly Notices of the Royal Astronomical Society, 2020, 500, 2503-2513.	1.6	13
65	Plateau de Bure High-z Blue Sequence Survey 2 (PHIBSS2): Search for Secondary Sources, CO Luminosity Functions in the Field, and the Evolution of Molecular Gas Density through Cosmic Time*. Astronomical Journal, 2020, 159, 190.	1.9	36
66	Atacama Compact Array Measurements of the Molecular Mass in the NGC 5044 Cooling-flow Group. Astrophysical Journal, 2020, 894, 72.	1.6	14
67	Central kiloparsec of NGC 1326 observed with SINFONI. Astronomy and Astrophysics, 2020, 638, A53.	2.1	2
68	Constraining cold accretion on to supermassive black holes: molecular gas in the cores of eight brightest cluster galaxies revealed by joint CO and CN absorption. Monthly Notices of the Royal Astronomical Society, 2019, 489, 349-365.	1.6	47
69	SIGNALS: I. Survey description. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5530-5546.	1.6	30
70	Driving massive molecular gas flows in central cluster galaxies with AGN feedback. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3025-3045.	1.6	79
71	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2019, 627, A26.	2.1	18
72	Molecular clouds in the Cosmic Snake normal star-forming galaxy 8 billion years ago. Nature Astronomy, 2019, 3, 1115-1121.	4.2	57

#	Article	IF	Citations
73	A Consistent Set of Empirical Scaling Relations for Spiral Galaxies: The (v _{max} ,) Tj ETQq1 1 0.784314	rgBT /Ove	rlogk 10 Tr
74	An Enormous Molecular Gas Flow in the RX J0821+0752 Galaxy Cluster. Astrophysical Journal, 2019, 870, 57.	1.6	22
7 5	Molecular and Ionized Gas Phases of an AGN-driven Outflow in a Typical Massive Galaxy at zÂâ‰^Â2. Astrophysical Journal, 2019, 871, 37.	1.6	56
76	Revealing a Highly Dynamic Cluster Core in Abell 1664 with Chandra. Astrophysical Journal, 2019, 875, 65.	1.6	11
77	Discovery of a diffuse optical line emitting halo in the core of the Centaurus cluster of galaxies: line emission outside the protection of the filaments. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4984-4998.	1.6	8
78	LOFAR Surveys: a new window on the Universe. Astronomy and Astrophysics, 2019, 622, E1.	2.1	2
79	ALMA observations of molecular tori around massive black holes. Astronomy and Astrophysics, 2019, 623, A79.	2.1	134
80	PHIBSS2: survey design and ⟨i⟩z⟨ i⟩ = 0.5 – 0.8 results. Astronomy and Astrophysics, 2019, 622, A105.	2.1	77
81	Deep and narrow CO absorption revealing molecular clouds in the Hydra-A brightest cluster galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 485, 229-238.	1.6	31
82	Secular evolution and pseudo-bulges. Proceedings of the International Astronomical Union, 2019, 14, 155-161.	0.0	0
83	Molecular clouds in a Milky Way progenitor at $z=1$. Proceedings of the International Astronomical Union, 2019, 15, 269-273.	0.0	0
84	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2019, 627, A53.	2.1	52
85	Nuclear molecular outflow in the Seyfert galaxy NGC 3227. Astronomy and Astrophysics, 2019, 628, A65.	2.1	48
86	ALMA captures feeding and feedback from the active galactic nucleus in NGC 613. Astronomy and Astrophysics, 2019, 632, A33.	2.1	39
87	Ubiquitous cold and massive filaments in cool core clusters. Astronomy and Astrophysics, 2019, 631, A22.	2.1	92
88	The echo of the bar buckling: Phase-space spirals in <i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2019, 622, L6.	2.1	81
89	Dense gas formation and destruction in a simulated Perseus-like galaxy cluster with spin-driven black hole feedback. Astronomy and Astrophysics, 2019, 631, A60.	2.1	33
90	Disk origin of the Milky Way bulge: the necessity of the thick disk. Astronomy and Astrophysics, 2019, 628, A11.	2.1	21

#	Article	IF	Citations
91	Molecular gas in radio galaxies in dense megaparsec-scale environments at ⟨i⟩z⟨ i⟩ = 0.4–2.6. Astronomy and Astrophysics, 2019, 623, A48.	2.1	15
92	Discovery of CO absorption at $\langle i \rangle z \langle i \rangle = 0.05$ in G0248+430. Astronomy and Astrophysics, 2019, 623, A133.	2.1	9
93	Physical conditions in Centaurus A's northern filaments. Astronomy and Astrophysics, 2019, 627, A6.	2.1	1
94	Molecular gas content of shell galaxies. Astronomy and Astrophysics, 2019, 630, A112.	2.1	9
95	ALMA CO(2-1) observations in the XUV disk of M83. Astronomy and Astrophysics, 2019, 623, A66.	2.1	7
96	Hidden or missing outflows in highly obscured galaxy nuclei?. Astronomy and Astrophysics, 2019, 623, A29.	2.1	24
97	M 31 circum-nuclear region: A molecular survey with the IRAM interferometer. Astronomy and Astrophysics, 2019, 625, A148.	2.1	2
98	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2019, 626, L3.	2.1	9
99	A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). Astronomy and Astrophysics, 2019, 623, A52.	2.1	17
100	ALMA images the many faces of the NGC 1068 torus and its surroundings. Astronomy and Astrophysics, 2019, 632, A61.	2.1	97
101	The hidden heart of the luminous infrared galaxy IC 860. Astronomy and Astrophysics, 2019, 627, A147.	2.1	36
102	Near-infrared observations of star formation and gas flows in the NUGA galaxy NGC 1365. Astronomy and Astrophysics, 2019, 622, A128.	2.1	18
103	PAHs as tracers of the molecular gas in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1618-1633.	1.6	29
104	Complex molecular gas kinematics in the inner 5 kpc of 4C12.50 as seen by ALMA. Astronomy and Astrophysics, 2019, 629, A30.	2.1	11
105	Probing the merger history of red early-type galaxies with their faint stellar substructures. Astronomy and Astrophysics, 2019, 632, A122.	2.1	44
106	ALMA Unveils Widespread Molecular Gas Clumps in the Ram Pressure Stripped Tail of the Norma Jellyfish Galaxy. Astrophysical Journal, 2019, 883, 145.	1.6	78
107	AGN fueling and feedback. Proceedings of the International Astronomical Union, 2019, 15, 177-183.	0.0	0
108	Circum-nuclear molecular disks: Role in AGN fueling and feedback. Proceedings of the International Astronomical Union, 2019, 15, 312-317.	0.0	0

#	Article	IF	CITATIONS
109	Feeding and feedback in nuclei of galaxies. Proceedings of the International Astronomical Union, 2019, 15, 307-311.	0.0	1
110	MALS–NOT: Identifying Radio-bright Quasars for the MeerKAT Absorption Line Survey. Astrophysical Journal, Supplement Series, 2018, 235, 10.	3.0	13
111	Molecular Gas Filaments and Star-forming Knots Beneath an X-Ray Cavity in RXC J1504–0248. Astrophysical Journal, 2018, 863, 193.	1.6	22
112	Resolving the Nuclear Obscuring Disk in the Compton-thick Seyfert Galaxy NGC 5643 with ALMA. Astrophysical Journal, 2018, 859, 144.	1.6	67
113	A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). Astronomy and Astrophysics, 2018, 614, A56.	2.1	70
114	Molecular gas in two companion cluster galaxies at $z=1.2$ (Corrigendum). Astronomy and Astrophysics, 2018, 620, C4.	2.1	0
115	Spectroscopic characterization of the protocluster of galaxies around 7C 1756+6520 at $\langle i \rangle z \langle i \rangle \sim 1.4$. Astronomy and Astrophysics, 2018, 618, A128.	2.1	3
116	Spatially resolved cold molecular outflows in ULIRGs. Astronomy and Astrophysics, 2018, 616, A171.	2.1	45
117	Cold gas in a complete sample of group-dominant early-type galaxies. Astronomy and Astrophysics, 2018, 618, A126.	2.1	31
118	Angular Momentum – Conference Summary. Proceedings of the International Astronomical Union, 2018, 14, 197-202.	0.0	0
119	Molecular gas filamentary structures in galaxy clusters. Proceedings of the International Astronomical Union, 2018, 14, 77-84.	0.0	1
120	A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole. Astrophysical Journal, 2018, 865, 13.	1.6	85
121	Molecular gas in two companion cluster galaxies at $\langle i \rangle z \langle i \rangle = 1.2$. Astronomy and Astrophysics, 2018, 617, A103.	2.1	18
122	Inefficient jet-induced star formation in Centaurus A. Astronomy and Astrophysics, 2018, 617, C3.	2.1	0
123	The Close AGN Reference Survey (CARS): SOFIA Detects Spatially Resolved [C ii] Emission in the Luminous AGN HE 0433-1028 ^{â^—} . Astrophysical Journal Letters, 2018, 866, L9.	3.0	0
124	Molecular line emission in NGC 4945, imaged with ALMA. Astronomy and Astrophysics, 2018, 615, A155.	2.1	29
125	Radial migration in a stellar galactic disc with thick components. Astronomy and Astrophysics, 2018, 616, A86.	2.1	27
126	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2018, 618, A27.	2.1	8

#	Article	IF	CITATIONS
127	Searching for a kinematic signature of the moderately metal-poor stars in the Milky Way bulge using N-body simulations. Astronomy and Astrophysics, 2018, 615, A100.	2.1	9
128	The disc origin of the Milky Way bulge. Astronomy and Astrophysics, 2018, 616, A180.	2.1	52
129	ALMA Observations of Molecular Absorption in the Gravitational Lens PMN 0134â^'0931 at zÂ=Â0.7645. Astrophysical Journal, 2018, 864, 73.	1.6	12
130	PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions*. Astrophysical Journal, 2018, 853, 179.	1.6	467
131	Bar quenching in gas-rich galaxies. Astronomy and Astrophysics, 2018, 609, A60.	2.1	67
132	Stellar metallicity variations across spiral arms in disk galaxies with multiple populations. Astronomy and Astrophysics, 2018, 611, L2.	2.1	16
133	Molecular gas in distant galaxies from ALMA studies. Astronomy and Astrophysics Review, 2018, 26, 1.	9.1	32
134	The MeerKAT Absorption Line Survey (MALS). , 2018, , .		4
135	Molecular Gas Dominated 50 kpc Ram Pressure Stripped Tail of the Coma Galaxy D100 [*] . Astrophysical Journal, 2017, 839, 114.	1.6	68
136	From molecules to young stellar clusters: the star formation cycle across the disk of M 33. Astronomy and Astrophysics, 2017, 601, A146.	2.1	70
137	HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS zÂ=Â1–3*. Astrophysical Journal, 2017, 835, 110.	1.6	7
138	PLATO <i>as it is</i> : A legacy mission for Galactic archaeology. Astronomische Nachrichten, 2017, 338, 644-661.	0.6	61
139	On the kinematic detection of accreted streams in the <i>Gaia </i> era: a cautionary tale. Astronomy and Astrophysics, 2017, 604, Alo6.	2.1	65
140	PHIBSS: exploring the dependence of the CO–H2 conversion factor on total mass surface density at z<1.5. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4886-4901.	1.6	20
141	Star formation and gas flows in the centre of the NUGA galaxy NGC 1808 observed with SINFONI. Astronomy and Astrophysics, 2017, 598, A55.	2.1	23
142	A ¹³ CO Detection in a Brightest Cluster Galaxy. Astrophysical Journal, 2017, 848, 101.	1.6	25
143	Close entrainment of massive molecular gas flows by radio bubbles in the central galaxy of Abell 1795. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4024-4037.	1.6	49
144	Bars and boxy/peanut bulges in thin and thick discs. Astronomy and Astrophysics, 2017, 606, A47.	2.1	49

#	Article	IF	Citations
145	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2017, 607, L9.	2.1	16
146	AGN Feedback and Its Quenching Efficiency. Frontiers in Astronomy and Space Sciences, 2017, 4, .	1.1	17
147	Probing the Gas Fueling and Outflows in Nearby AGN with ALMA. Frontiers in Astronomy and Space Sciences, 2017, 4, .	1.1	4
148	Luminous, pc-scale CO $6\hat{a}^{3}$ emission in the obscured nucleus of NGC 1377. Astronomy and Astrophysics, 2017, 608, A22.	2.1	16
149	Inefficient jet-induced star formation in Centaurus A. Astronomy and Astrophysics, 2017, 608, A98.	2.1	20
150	Physical conditions of the molecular gas in metal-poor galaxies. Astronomy and Astrophysics, 2017, 606, A99.	2.1	13
151	Molecular gas properties of a lensed star-forming galaxy at <i>z </i> ~ 3.6: a case study. Astronomy and Astrophysics, 2017, 605, A81.	2.1	41
152	ALMA imaging of C ₂ H emission in the disk of NGC 1068. Astronomy and Astrophysics, 2017, 608, A56.	2.1	30
153	Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063. Astronomy and Astrophysics, 2017, 608, A38.	2.1	60
154	Closing remarks and Outlook. Proceedings of the International Astronomical Union, 2017, 13, 248-255.	0.0	0
155	Exhaustion of the gas next to the supermassive black hole of M31. Astronomy and Astrophysics, 2017, 607, L7.	2.1	3
156	High-redshift major mergers weakly enhance star formation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1934-1949.	1.6	90
157	Detection of CH ⁺ , SH ⁺ , and their ¹³ C- and ^{S-isotopologues toward PKS 1830â^'211. Astronomy and Astrophysics, 2017, 606, A109.}	2.1	23
158	The molecular gas mass of M 33. Astronomy and Astrophysics, 2017, 600, A27.	2.1	21
159	Understanding the environment around the intermediate mass black hole candidate ESO 243-49 HLX-1. Astronomy and Astrophysics, 2017, 602, A103.	2.1	12
160	What the Milky Way bulge reveals about the initial metallicity gradients in the disc. Astronomy and Astrophysics, 2017, 607, L4.	2.1	23
161	Star formation efficiency along the radio jet in Centaurus A(Corrigendum). Astronomy and Astrophysics, 2016, 593, C5.	2.1	0
162	Atomic-to-molecular gas phase transition triggered by the radio jet in Centaurus A. Astronomy and Astrophysics, 2016, 595, A65.	2.1	17

#	Article	IF	CITATIONS
163	Star formation efficiency along the radio jet in Centaurus A. Astronomy and Astrophysics, 2016, 586, A45.	2.1	31
164	Exploring the GalMer database: bar properties and non-circular motions. Astronomy and Astrophysics, 2016, 594, A86.	2.1	6
165	The Galactic Center compared with nuclei of nearby galaxies. Proceedings of the International Astronomical Union, 2016, 11, 245-252.	0.0	1
166	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, E1.	2.1	51
167	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2016, 593, L8.	2.1	91
168	OH ⁺ and H ₂ O ⁺ absorption toward PKS 1830–211. Astronomy and Astrophysics, 2016, 595, A128.	2.1	36
169	<i>HST</i> imaging of the dusty filaments and nucleus swirl in NGC4696 at the centre of the Centaurus Cluster. Monthly Notices of the Royal Astronomical Society, 2016, 461, 922-928.	1.6	23
170	The overmassive black hole in NGC 1277: new constraints from molecular gas kinematics. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4272-4284.	1.6	16
171	Extragalactic Astronomy: From Pioneers to Big Science. Astrophysics and Space Science Library, 2016, , 1-92.	1.0	2
172	AGN feedback and star formation in young and old radio galaxies. Astronomische Nachrichten, 2016, 337, 188-193.	0.6	0
173	ALMA RESOLVES THE TORUS OF NGC 1068: CONTINUUM AND MOLECULAR LINE EMISSION. Astrophysical Journal Letters, 2016, 823, L12.	3.0	170
174	Competition between Spin Echo and Spin Self-Rephasing in a Trapped Atom Interferometer. Physical Review Letters, 2016, 117, 163003.	2.9	14
175	MOLECULAR GAS ALONG A BRIGHT Hα FILAMENT IN 2A 0335+096 REVEALED BY ALMA. Astrophysical Journal, 2016, 832, 148.	1.6	48
176	Cold, clumpy accretion onto an active supermassive black hole. Nature, 2016, 534, 218-221.	13.7	137
177	Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1758-1789.	1.6	66
178	From cusps to cores: a stochastic model. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1745-1759.	1.6	32
179	The Impact of Information Availability on Destination Choice. Journal of Economics and Management Strategy, 2016, 25, 678-687.	0.4	0
180	ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKSÂ0745â^'191. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3134-3149.	1.6	72

#	Article	IF	CITATIONS
181	A search for H i and OH absorption in <i>>z</i> à363 3 CO emitters. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3666-3677.	1.6	14
182	Explaining the Formation of Bulges with MOND. Astrophysics and Space Science Library, 2016, , 413-428.	1.0	5
183	New Eyes for Galaxies Investigation. Astrophysics and Space Science Library, 2016, , 697-737.	1.0	1
184	Dense gas tracing the collisional past of Andromeda. Astronomy and Astrophysics, 2016, 585, A44.	2.1	6
185	A new look at the kinematics of the bulge from an <i>N</i> body model. Astronomy and Astrophysics, 2016, 589, A122.	2.1	7
186	A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377?. Astronomy and Astrophysics, 2016, 590, A73.	2.1	46
187	The Close AGN Reference Survey (CARS). Astronomy and Astrophysics, 2016, 593, L9.	2.1	51
188	ALMA reveals optically thin, highly excited CO gas in the jet-driven winds of the galaxy IC 5063. Astronomy and Astrophysics, 2016, 595, L7.	2.1	69
189	La matière noire dans l'Univers. , 2016, , .		1
190	The Anatomy of Galaxies. Astrophysics and Space Science Library, 2016, , 243-379.	1.0	1
191	In Pursuit of High Redshift Galaxies. Astrophysics and Space Science Library, 2016, , 479-508.	1.0	0
192	EXECUTIVE COMMITTEE WORKING GROUP: WOMEN IN ASTRONOMY. Proceedings of the International Astronomical Union, 2015, 11, 531-538.	0.0	1
193	HIGH-RESOLUTION IMAGING OF PHIBSS < i> z < /i> $\hat{a}^{1}/4$ 2 MAIN-SEQUENCE GALAXIES IN CO < i> J < /i> = 1 \hat{a} †' 0. Astrophysical Journal, 2015, 809, 175.	1.6	42
194	The Square Kilometer Array: cosmology, pulsars and other physics with the SKA. Journal of Instrumentation, 2015, 10, C09001-C09001.	0.5	8
195	Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN. Astronomy and Astrophysics, 2015, 584, A42.	2.1	83
196	A RADIO JET DRIVES A MOLECULAR AND ATOMIC GAS OUTFLOW IN MULTIPLE REGIONS WITHIN ONE SQUARE KILOPARSEC OF THE NUCLEUS OF THE NEARBY GALAXY IC5063. Astrophysical Journal, 2015, 815, 34.	1.6	41
197	Estimating non-circular motions in barred galaxies using numerical <i>N</i> body simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3743-3759.	1.6	22
198	Environmental regulation of cloud and star formation in galactic bars. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3299-3310.	1.6	63

#	Article	IF	Citations
199	New constraints on dust emission and UV attenuation of <i>>z < /i> = 6.5–7.5 galaxies from millimeter observations. Astronomy and Astrophysics, 2015, 574, A19.</i>	2.1	80
200	Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances. Astronomy and Astrophysics, 2015, 578, A87.	2.1	124
201	Mapping the inner regions of the polar disk galaxy NGC 4650A with MUSE. Astronomy and Astrophysics, 2015, 583, A48.	2.1	11
202	Why the Milky Way's bulge is not only a bar formed from a cold thin disk. Astronomy and Astrophysics, 2015, 577, A1.	2.1	64
203	Molecular gas content in strongly lensed < i>z < /i> $\sim 1.5 \hat{a}^3$ star-forming galaxies with low infrared luminosities. Astronomy and Astrophysics, 2015, 577, A50.	2.1	78
204	Quantifying stellar radial migration in an $<$ i>N $<$ /i>-body simulation: blurring, churning, and the outer regions of galaxy discs. Astronomy and Astrophysics, 2015, 578, A58.	2.1	57
205	The resolved star-formation relation in nearby active galactic nuclei. Astronomy and Astrophysics, 2015, 577, A135.	2.1	47
206	Measuring star formation with resolved observations: the test case of M 33. Astronomy and Astrophysics, 2015, 578, A8.	2.1	36
207	Exceptional AGN-driven turbulence inhibits star formation in the 3C 326N radio galaxy. Astronomy and Astrophysics, 2015, 574, A32.	2.1	49
208	Molecular gas, stars, and dust in sub-Lâ \langle † star-forming galaxies at z ~ 2: Evidence for universal star formation and non-universal dust-to-gas ratio. Proceedings of the International Astronomical Union, 2015, 11, 254-257.	0.0	0
209	Resolved star formation relations at high redshift from the IRAM PHIBSS program. Proceedings of the International Astronomical Union, 2015, 11 , .	0.0	O
210	New emerging results on molecular gas, stars, and dust at $z\sim2$, as revealed by low star formation rate and low stellar mass star-forming galaxies. Proceedings of the International Astronomical Union, 2015, 11, 88-91.	0.0	0
211	The Evolution of Gas Content and Star Formation from $z=3$ to $z=0$. Proceedings of the International Astronomical Union, 2015, 11, 240-246.	0.0	0
212	Jet-induced star formation in 3C 285 and Minkowski's Object. Astronomy and Astrophysics, 2015, 574, A34.	2.1	46
213	Cold gas in group-dominant elliptical galaxies. Astronomy and Astrophysics, 2015, 573, A111.	2.1	35
214	Molecular depletion times and the CO-to-H ₂ conversion factor in metal-poor galaxies. Astronomy and Astrophysics, 2015, 583, A114.	2.1	83
215	Ram pressure stripping in the Virgo Cluster. Astronomy and Astrophysics, 2015, 582, A6.	2.1	36
216	Constraining star formation rates in cool-core brightest cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2564-2592.	1.6	25

#	Article	IF	Citations
217	COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS. Astrophysical Journal, 2015, 800, 20.	1.6	482
218	Far-ultraviolet morphology of star-forming filaments in cool core brightest cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3768-3800.	1.6	62
219	H i study of the environment around ESOÂ243â^'49, the host galaxy of an intermediate-mass black hole. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1951-1961.	1.6	6
220	NenUFAR: Instrument description and science case. , 2015, , .		18
221	Polar-ring galaxies: the SDSS view on the symbiotic galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2287-2294.	1.6	14
222	MUSE discovers perpendicular arcs in the inner filament of Centaurus A. Astronomy and Astrophysics, 2015, 575, L3.	2.1	14
223	The nuclear gas disk of NGC 1566 dissected by SINFONI and ALMA. Astronomy and Astrophysics, 2015, 583, A104.	2.1	21
224	ALMA detection of [C ii] 158 <i>î¼</i> m emission from a strongly lensed <i>z</i> = 2.013 star-forming galaxy. Astronomy and Astrophysics, 2015, 576, L2.	2.1	20
225	High-resolution imaging of the molecular outflows in two mergers: IRAS 17208-0014 and NGC 1614. Astronomy and Astrophysics, 2015, 580, A35.	2.1	68
226	The IRAM M 33 CO(2–1) survey. Astronomy and Astrophysics, 2014, 567, A118.	2.1	87
227	Complex molecules in the Orion Kleinmann-Low nebula. BIO Web of Conferences, 2014, 2, 03006.	0.1	0
228	<i>Planck</i> 2013 results. Astronomy and Astrophysics, 2014, 571, E1.	2.1	51
229	Heating of the molecular gas in the massive outflow of the local ultraluminous-infrared and radio-loud galaxy 4C12.50. Astronomy and Astrophysics, 2014, 565, A46.	2.1	35
230	Fueling the central engine of radio galaxies. Astronomy and Astrophysics, 2014, 564, A128.	2.1	16
231	ALMA-backed NIR high resolution integral field spectroscopy of the NUGA galaxy NGC 1433. Astronomy and Astrophysics, 2014, 567, A119.	2.1	18
232	Molecular line emission in NGC 1068 imaged with ALMA. Astronomy and Astrophysics, 2014, 570, A28.	2.1	107
233	THE DOMINANT EPOCH OF STAR FORMATION IN THE MILKY WAY FORMED THE THICK DISK. Astrophysical Journal Letters, 2014, 781, L31.	3.0	115
234	[C II] AND $\langle \sup 12 \langle \sup \rangle$ CO(1-0) EMISSION MAPS IN HLSJ091828.6+514223: A STRONGLY LENSED INTERACTING SYSTEM AT $\langle i \rangle$ = 5.24. Astrophysical Journal, 2014, 783, 59.	√G 1.6	86

#	Article	IF	CITATIONS
235	MASSIVE MOLECULAR GAS FLOWS IN THE A1664 BRIGHTEST CLUSTER GALAXY. Astrophysical Journal, 2014, 784, 78.	1.6	72
236	The interplay between a galactic bar and a supermassive black hole: nuclear fuelling in a subparsec resolution galaxy simulation. Monthly Notices of the Royal Astronomical Society, 2014, 446, 2468-2482.	1.6	101
237	<i>HERSCHEL</i> STAR-FORMING GALAXIES NEAR REDSHIFT <ip><i><i> <i> <i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></ip>	1.6	10
238	ABUNDANT MOLECULAR GAS AND INEFFICIENT STAR FORMATION IN INTRACLUSTER REGIONS: RAM PRESSURE STRIPPED TAIL OF THE NORMA GALAXY ESO137-001. Astrophysical Journal, 2014, 792, 11.	1.6	114
239	AN INFRARED-LUMINOUS MERGER WITH TWO BIPOLAR MOLECULAR OUTFLOWS: ALMA AND SMA OBSERVATIONS OF NGC 3256. Astrophysical Journal, 2014, 797, 90.	1.6	81
240	A 10 ¹⁰ SOLAR MASS FLOW OF MOLECULAR GAS IN THE A1835 BRIGHTEST CLUSTER GALAXY. Astrophysical Journal, 2014, 785, 44.	1.6	112
241	Cold gas dynamics in Hydra-A: evidence for a rotating disc. Monthly Notices of the Royal Astronomical Society, 2014, 437, 862-878.	1.6	43
242	THE ROLE OF TURBULENCE IN STAR FORMATION LAWS AND THRESHOLDS. Astrophysical Journal, 2014, 784, 112.	1.6	25
243	MOLECULAR GAS IN THE X-RAY BRIGHT GROUP NGC 5044 AS REVEALED BY ALMA. Astrophysical Journal, 2014, 792, 94.	1.6	72
244	Galaxy size trends as a consequence of cosmology. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1570-1583.	1.6	15
245	Bulge formation in disk galaxies with MOND. Astronomy and Astrophysics, 2014, 571, A82.	2.1	17
246	Mapping a stellar disk into a boxy bulge: The outside-in part of the Milky Way bulge formation. Astronomy and Astrophysics, 2014, 567, A122.	2.1	60
247	An ALMA Early Science survey of molecular absorption lines toward PKS 1830â^'211. Astronomy and Astrophysics, 2014, 566, A112.	2.1	57
248	Detection of chloronium and measurement of the ³⁵ Cl/ ³⁷ Cl isotopic ratio at <i>>z</i> = 0.89 toward PKS 1830–211. Astronomy and Astrophysics, 2014, 566, L6.	2.1	30
249	Molecular line emission in NGC 1068 imaged with ALMA. Astronomy and Astrophysics, 2014, 567, A125.	2.1	330
250	ALMA observations of cool dust in a low-metallicity starburst, SBS 0335â^'052. Astronomy and Astrophysics, 2014, 561, A49.	2.1	41
251	Metallicity and kinematics of the bar in situ. Astronomy and Astrophysics, 2014, 563, A15.	2.1	41
252	Science case and requirements for the MOSAIC concept for a multi-object spectrograph for the European Extremely Large Telescope. Proceedings of SPIE, 2014, , .	0.8	6

#	Article	IF	Citations
253	Models of AGN feedback. Proceedings of the International Astronomical Union, 2014, 10, 182-189.	0.0	2
254	Abundant molecular gas and inefficient SF in intra-cluster regions of a ram pressure stripped tail. Proceedings of the International Astronomical Union, 2014, 10, 227-229.	0.0	0
255	An Infrared Luminous Merger with Two Bipolar Molecular Outflows : ALMA View of NGC 3256. Proceedings of the International Astronomical Union, 2014, 10, 342-342.	0.0	0
256	Molecular gas content in typical L* galaxies at z \hat{a}^4 1.5 \hat{a}^3 3. Proceedings of the International Astronomical Union, 2014, 10, 285-286.	0.0	0
257	Variation in the dust emissivity index across M 33 with <i>Herschel</i> and <i>Spitzer</i> (HerM 33es). Astronomy and Astrophysics, 2014, 561, A95.	2.1	53
258	ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433 (Corrigendum). Astronomy and Astrophysics, 2014, 564, C1.	2.1	3
259	Local stability of a gravitating filament: a dispersion relation. Astronomy and Astrophysics, 2014, 564, A7.	2.1	24
260	CO map and steep Kennicutt-Schmidt relation in the extended UV disk of M 63. Astronomy and Astrophysics, 2014, 566, A147.	2.1	22
261	ALMA reveals the feeding of the Seyfert 1 nucleus in NGC 1566. Astronomy and Astrophysics, 2014, 565, A97.	2.1	100
262	A sub-parsec resolution simulation of the Milky Way: global structure of the interstellar medium and properties of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1836-1851.	1.6	159
263	Polar ring galaxies as tests of gravity. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2846-2853.	1.6	32
264	PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE $\langle i \rangle z \langle i \rangle = 1.5$ STAR-FORMING GALAXY EGS13011166. Astrophysical Journal, 2013, 773, 68.	1.6	78
265	PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN <i>z</i> å^½ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 768, 74.	1.6	752
266	ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433. Astronomy and Astrophysics, 2013, 558, A124.	2.1	137
267	Towards a resolved Kennicutt-Schmidt law at high redshift. Astronomy and Astrophysics, 2013, 553, A130.	2.1	55
268	Low-frequency radio emission in the massive galaxy cluster MACS <i>J</i> o717.5 + 3745. Astronomy and Astrophysics, 2013, 557, A117.	2.1	16
269	Signatures of radial migration in barred galaxies: Azimuthal variations in the metallicity distribution of old stars. Astronomy and Astrophysics, 2013, 553, A102.	2.1	103
270	A precise and accurate determination of the cosmic microwave background temperature at $\langle i \rangle z \langle i \rangle = 0.89$. Astronomy and Astrophysics, 2013, 551, A109.	2.1	85

#	Article	IF	CITATIONS
271	THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES. Astrophysical Journal, 2013, 764, 174.	1.6	25
272	A cold-gas reservoir to fuel the M 31 nuclear black hole and stellar cluster. Astronomy and Astrophysics, 2013, 549, A27.	2.1	11
273	Cold dust in the giant barred galaxy NGC 1365. Astronomy and Astrophysics, 2013, 555, A128.	2.1	14
274	Search for cold and hot gas in the ram pressure stripped Virgo dwarf galaxy IC 3418. Astronomy and Astrophysics, 2013, 556, A99.	2.1	23
275	What produces the extended LINER-type emission in the NUGA galaxy NGC 5850?. Astronomy and Astrophysics, 2013, 558, A34.	2.1	13
276	Probing the jet base of the blazar PKS 1830â^'211 from the chromatic variability of its lensed images. Astronomy and Astrophysics, 2013, 558, A123.	2.1	29
277	An extended <i>Herschel</i> drop-out source in the center of AS1063: a normal dusty galaxy at <i>z</i> = 6.1 or SZ substructures?. Astronomy and Astrophysics, 2013, 559, L1.	2.1	24
278	A gas-rich AGN near the centre of a galaxy cluster at <i>z</i> ~ \hat{A} 1.4. Astronomy and Astrophysics, 2013, 558, A60.	2.1	19
279	Spectral energy distributions of H ii regions in M 33 (HerM33es). Astronomy and Astrophysics, 2013, 55 A140.	2,1	18
280	CH ₃ OCH ₃ in Orion-KL: a striking similarity with HCOOCH ₃ . Astronomy and Astrophysics, 2013, 550, A46.	2.1	60
281	Cold gas in the inner regions of intermediate redshift clusters. Astronomy and Astrophysics, 2013, 557, A103.	2.1	31
282	Gas fraction and star formation efficiency at <i>z</i> k lt; 1.0. Astronomy and Astrophysics, 2013, 550, A41.	2.1	102
283	Fueling the central engine of radio galaxies. Astronomy and Astrophysics, 2013, 549, A58.	2.1	18
284	Influence of baryonic physics in galaxy simulations:. Astronomy and Astrophysics, 2013, 559, A55.	2.1	11
285	Acetone in Orion BN/KL. Astronomy and Astrophysics, 2013, 554, A78.	2.1	36
286	Molecular content of polar-ring galaxies. Astronomy and Astrophysics, 2013, 554, A11.	2.1	9
287	The role of external gas accretion on galaxy transformations, and evidence of such accretion. Proceedings of the International Astronomical Union, 2012, 10, 366-366.	0.0	0
288	Radial migration in barred galaxies. Proceedings of the International Astronomical Union, 2012, 10, 355-355.	0.0	0

#	Article	IF	CITATIONS
289	An upper limit to the variation in the fundamental constants at redshift $\langle i \rangle z \langle i \rangle = 5.2$. Astronomy and Astrophysics, 2012, 540, L9.	2.1	37
290	The feeding of activity in galaxies: a molecular line perspective. Journal of Physics: Conference Series, 2012, 372, 012050.	0.3	34
291	Cool and warm dust emission from M 33 (HerM33es). Astronomy and Astrophysics, 2012, 543, A74.	2.1	42
292	Dust and gas power spectrum in MÂ33 (HERM33ES). Astronomy and Astrophysics, 2012, 539, A67.	2.1	65
293	Dynamical processes in galaxy centers. Journal of Physics: Conference Series, 2012, 372, 012041.	0.3	4
294	Star Formation Efficiency at Intermediate Redshift. Proceedings of the International Astronomical Union, 2012, 8, 303-306.	0.0	0
295	AGN feedback on the ISM of 3C 236. Proceedings of the International Astronomical Union, 2012, 8, 374-374.	0.0	0
296	<i>Herschel</i> observations of extended atomic gas in the core of the Perseus cluster. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2957-2977.	1.6	44
297	The bright end of the luminosity function at $i > z < /i > \hat{A} \sim \hat{A}$ 9. Astronomy and Astrophysics, 2012, 542, L31.	2.1	14
298	GREAT special feature. Astronomy and Astrophysics, 2012, 542, E1.	2.1	0
299	A bright <i>>z</i> = 5.2 lensed submillimeter galaxy in the field of Abell 773. Astronomy and Astrophysics, 2012, 538, L4.	2.1	118
300	Mass assembly of galaxies. Astronomy and Astrophysics, 2012, 544, A68.	2.1	51
301	Survival of molecular gas in Virgo's hot intracluster medium: CO near MÂ86. Astronomy and Astrophysics, 2012, 540, A112.	2.1	12
302	Molecular gas and star formation in the Milky Way. EPJ Web of Conferences, 2012, 19, 08002.	0.1	1
303	Residual cooling and persistent star formation amid active galactic nucleus feedback in Abell 2597. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1042-1060.	1.6	23
304	Multiphase signatures of active galactic nucleus feedback in Abell 2597. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1026-1041.	1.6	21
305	Giant molecular clouds in the Local Group galaxy M 33. Astronomy and Astrophysics, 2012, 542, A108.	2.1	89
306	Evolution of galactic discs: multiple patterns, radial migration, and disc outskirts. Astronomy and Astrophysics, 2012, 548, A126.	2.1	149

#	Article	IF	Citations
307	Cold and warm molecular gas in the outflow of 4C 12.50. Astronomy and Astrophysics, 2012, 541, L7.	2.1	64
308	THE METALLICITY DEPENDENCE OF THE CO \hat{a}^{\prime} H ₂ CONVERSION FACTOR IN <i>z</i> \hat{a}^{\prime} 1 STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 746, 69.	1.6	232
309	TheHerschelM 33 extended survey (HerM33es): PACS spectroscopy of the star forming region BCLMP 302(Corrigendum). Astronomy and Astrophysics, 2012, 537, C3.	2.1	1
310	HCOOCH ₃ as a probe of temperature and structure in Orion-KL. Astronomy and Astrophysics, 2011, 532, A32.	2.1	77
311	The <i>>Herschel</i> >M 33 extended survey (HerM33es): PACS spectroscopy of the star-forming region BCLMP 302. Astronomy and Astrophysics, 2011, 532, A152.	2.1	38
312	Early results from the Planckmission. Astronomy and Astrophysics, 2011, 536, E1.	2.1	10
313	Molecular Gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2011, 527, A92.	2.1	30
314	Far-infrared constraints on the contamination by dust-obscured galaxies of high- <i>z</i> dropout searches. Astronomy and Astrophysics, 2011, 534, A124.	2.1	10
315	Turbulent and fast motions of H ₂ gas in active galactic nuclei. Astronomy and Astrophysics, 2011, 533, L10.	2.1	39
316	Molecular gas in the inner 0.7 kpc-radius ring of M 31. Astronomy and Astrophysics, 2011, 536, A52.	2.1	20
317	A very extended molecular web around NGCÂ1275. Astronomy and Astrophysics, 2011, 531, A85.	2.1	91
318	DIVISION VIII: GALAXIES AND THE UNIVERSE. Proceedings of the International Astronomical Union, 2011, 7, 253-254.	0.0	0
319	EXECUTIVE COMMITTEE WORKING GROUP WOMEN IN ASTRONOMY. Proceedings of the International Astronomical Union, 2011, 7, 418-419.	0.0	0
320	Variation in the dust spectral index across M33. Proceedings of the International Astronomical Union, 2011, 7, 125-127.	0.0	1
321	COMMISSION 28: GALAXIES. Proceedings of the International Astronomical Union, 2011, 7, 255-259.	0.0	3
322	SUBMILLIMETER ARRAY/PLATEAU DE BURE INTERFEROMETER MULTIPLE LINE OBSERVATIONS OF THE NEARBY SEYFERT 2 GALAXY NGC 1068: SHOCK-RELATED GAS KINEMATICS AND HEATING IN THE CENTRAL 100 pc?. Astrophysical Journal, 2011, 736, 37.	1.6	98
323	High-resolution mapping of the physical conditions in two nearby active galaxies based on $\langle 12 \rangle / 12 \langle 12 \rangle / 1$	2.1	10
324	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2011, 529, A45.	2.1	23

#	Article	IF	CITATIONS
325	A VIEW OF THE NARROW-LINE REGION IN THE INFRARED: ACTIVE GALACTIC NUCLEI WITH RESOLVED FINE-STRUCTURE LINES IN THE <i> SPITZER < /i > ARCHIVE. Astrophysical Journal, 2011, 740, 94.</i>	1.6	45
326	Molecules at <i>z</i> = 0.89. Astronomy and Astrophysics, 2011, 535, A103.	2.1	137
327	Molecular gas and star formation in early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 410, 1197-1222.	1.6	101
328	An expanded Mbh- if diagram, and a new calibration of active galactic nuclei masses. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2211-2228.	1.6	345
329	The ATLAS3D project - IV. The molecular gas content of early-type galaxiesa~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 940-967.	1.6	334
330	On the absence of molecular absorption in high-redshift millimetre-band searches. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2143-2153.	1.6	22
331	Molecular gas in intermediate-redshift ultraluminous infrared galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2600-2606.	1.6	11
332	Herschelã observations of the Centaurus cluster - the dynamics of cold gas in a cool core. Monthly Notices of the Royal Astronomical Society, 2011, 418, 2386-2402.	1.6	43
333	DUST HEATING SOURCES IN GALAXIES: THE CASE OF M33 (HERM33ES). Astronomical Journal, 2011, 142, 111.	1.9	109
334	Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations. Astronomy and Astrophysics, 2011, 527, A147.	2.1	145
335	Galaxy evolution and star formation efficiency at 0.2 Â<Â <i>z</i> Â<Â 0.6. Astronomy and Astrophysics, 2011, 528, A124.	2.1	72
336	DIVISION VIII: GALAXIES AND THE UNIVERSE. Proceedings of the International Astronomical Union, 2010, 6, 223-224.	0.0	0
337	Galaxy Dynamics: Secular Evolution and Accretion. Proceedings of the International Astronomical Union, 2010, 6, 119-126.	0.0	3
338	Molecular Gas in Galaxies at all Redshifts. Proceedings of the International Astronomical Union, 2010, 6, 47-54.	0.0	0
339	Molecular Gas and Star Formation in Local Early–type Galaxies. Proceedings of the International Astronomical Union, 2010, 6, 55-58.	0.0	O
340	Improving the identification of high- <i>z</i> Herschel sources with position priors and optical/NIR and FIR/mm photometric redshifts. Astronomy and Astrophysics, 2010, 518, L15.	2.1	28
341	DeepHerschelview of obscured star formation in the Bullet cluster. Astronomy and Astrophysics, 2010, 518, L14.	2.1	27
342	First detection of the Sunyaev Zel'dovich effect increment at <i>l)»</i> klt; 650Â <i>l½</i> m. Astronomy and Astrophysics, 2010, 518, L16.	2.1	32

#	Article	IF	CITATIONS
343	The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster. Astronomy and Astrophysics, 2010, 518, L13.	2.1	36
344	The <i>Herschel </i> Lensing Survey (HLS): Overview. Astronomy and Astrophysics, 2010, 518, L12.	2.1	87
345	Reionization by UV or X-ray sources. Astronomy and Astrophysics, 2010, 523, A4.	2.1	74
346	Probing the Merger History of Red Early-Type Galaxies with Their Faint Stellar Substructures. , 2010, , .		0
347	THE ENERGETICS OF MOLECULAR GAS IN NGC 891 FROM H ₂ AND FAR-INFRARED SPECTROSCOPY. Astrophysical Journal, 2010, 721, 59-73.	1.6	11
348	Discovery of an extremely bright submillimeter galaxy at <i>z</i> $\hat{A}=\hat{A}3.93$. Astronomy and Astrophysics, 2010, 522, L4.	2.1	28
349	ALMA and the First Galaxies. , 2010, , .		1
350	Dark Matter Tested with Satellites. , 2010, , .		0
351	High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature, 2010, 463, 781-784.	13.7	807
352	The dilution peak, metallicity evolution, and dating of galaxy interactions and mergers. Astronomy and Astrophysics, 2010, 518, A56.	2.1	69
352	The dilution peak, metallicity evolution, and dating of galaxy interactions and mergers. Astronomy and Astrophysics, 2010, 518, A56. <i>Herschel</i> observations of FIR emission lines in brightest clusterÂgalaxies. Astronomy and Astrophysics, 2010, 518, L46.	2.1	69 34
	and Astrophysics, 2010, 518, A56. <i>Herschel</i> observations of FIR emission lines in brightest clusterÂgalaxies. Astronomy and		
353	and Astrophysics, 2010, 518, A56. <i>Herschel</i> observations of FIR emission lines in brightest clusterÂgalaxies. Astronomy and Astrophysics, 2010, 518, L46. <i>Herschel</i> photometry of brightest cluster galaxies in cooling flow clusters. Astronomy and	2.1	34
353 354	and Astrophysics, 2010, 518, A56. <i>Herschel</i> observations of FIR emission lines in brightest clusterÂgalaxies. Astronomy and Astrophysics, 2010, 518, L46. <i>Herschel</i> photometry of brightest cluster galaxies in cooling flow clusters. Astronomy and Astrophysics, 2010, 518, L47.	2.1	43
353 354 355	and Astrophysics, 2010, 518, A56. <ir> <ir> <ir> <ir> <ir> <ir> <ir> <ir< td=""><td>2.1 2.1</td><td>34 43 67</td></ir<></ir></ir></ir></ir></ir></ir></ir>	2.1 2.1	34 43 67
353 354 355 356	and Astrophysics, 2010, 518, A56. (i>Herschel (i) observations of FIR emission lines in brightest clusterÂgalaxies. Astronomy and Astrophysics, 2010, 518, L46. (i>Herschel (i) photometry of brightest cluster galaxies in cooling flow clusters. Astronomy and Astrophysics, 2010, 518, L47. TANGO I: Interstellar medium in nearby radio galaxies. Astronomy and Astrophysics, 2010, 518, A9. Herschel/HIFI: first science highlights. Astronomy and Astrophysics, 2010, 521, E1.	2.1 2.1 2.1 2.1	34 43 67
353 354 355 356	and Astrophysics, 2010, 518, A56. ⟨i>Herschel⟨ i⟩observations of FIR emission lines in brightest clusterÂgalaxies. Astronomy and Astrophysics, 2010, 518, L46. ⟨i>Herschel⟨ i⟩photometry of brightest cluster galaxies in cooling flow clusters. Astronomy and Astrophysics, 2010, 518, L47. TANGO I: Interstellar medium in nearby radio galaxies. Astronomy and Astrophysics, 2010, 518, A9. Herschel/HIFI: first science highlights. Astronomy and Astrophysics, 2010, 521, E1. Molecular and atomic gas in the Local Group galaxy MÂ33. Astronomy and Astrophysics, 2010, 522, A3. Cool gas and dust in M 33: Results from the⟨i⟩HERschel⟨ i⟩M 33 Extended Survey (HERM33ES).	2.1 2.1 2.1 2.1	34 43 67 1

#	Article	IF	Citations
361	PACS and SPIRE photometer maps of M 33: First results of the <i>HERschel</i> àꀉM 33 Extended Surve (HERM33ES). Astronomy and Astrophysics, 2010, 518, L67.	ey _{2.1}	68
362	MOND and the Galaxies. , 2010, , .		7
363	The GalMer database: galaxy mergers in the virtual observatory. Astronomy and Astrophysics, 2010, 518, A61.	2.1	67
364	Molecular gas in NUclei of GAlaxies (NUGA) XIII. The interacting Seyfert 2/LINER galaxy NGC 5953. Astronomy and Astrophysics, 2010, 510, A52.	2.1	13
365	<i>Herschel</i> special feature. Astronomy and Astrophysics, 2010, 518, E1.	2.1	10
366	The simulated 21 \hat{A} cm signal during the epoch of reionization: full modeling of the Ly- <i>\hat{I}±</i> pumping. Astronomy and Astrophysics, 2009, 495, 389-405.	2.1	86
367	DYNAMICAL EVOLUTION OF AGN HOST GALAXIES—GAS IN/OUT-FLOW RATES IN SEVEN NUGA GALAXIES. Astrophysical Journal, 2009, 692, 1623-1661.	1.6	89
368	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2009, 503, 73-86.	2.1	33
369	Ram pressure stripping of tilted galaxies. Astronomy and Astrophysics, 2009, 500, 693-703.	2.1	44
370	From distances to galaxy evolution and the dark matter problem. Astronomy and Astrophysics, 2009, 500, 119-120.	2.1	3
371	Simulations of galactic disks including a dark baryonic component. Astronomy and Astrophysics, 2009, 501, 171-187.	2.1	26
372	NGCÂ6340: an old SO galaxy with a young polar disc. Astronomy and Astrophysics, 2009, 504, 389-400.	2.1	24
373	Interferometer observations of molecular gas in radio galaxies. Astronomische Nachrichten, 2009, 330, 245-248.	0.6	2
374	The molecular hydrogen explorer H2EX. Experimental Astronomy, 2009, 23, 277-302.	1.6	4
375	Molecular gas and star formation in the red-sequence counter-rotating disc galaxy NGC 4550. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1255-1264.	1.6	51
376	Lopsided spiral galaxies. Physics Reports, 2009, 471, 75-111.	10.3	73
377	The TANGO Project: Thorough ANalysis of radio-Galaxies Observations. Proceedings of the International Astronomical Union, 2009, 5, 127-127.	0.0	O
378	Radio measurements of constant variation, and perspectives with ALMA. Proceedings of the International Astronomical Union, 2009, 5, 322-322.	0.0	O

#	Article	IF	CITATIONS
379	Gas flows within the Galaxy. Proceedings of the International Astronomical Union, 2009, 5, 186-187.	0.0	0
380	Molecular lines studies at redshift greater than 1. Proceedings of the International Astronomical Union, 2009, 5, 418-420.	0.0	0
381	The molecular gas content of blue dwarf galaxies. Astronomy and Astrophysics, 2009, 496, 677-682.	2.1	12
382	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2009, 496, 85-105.	2.1	41
383	MOND and the dark baryons. Astronomy and Astrophysics, 2009, 496, 659-668.	2.1	16
384	On the survival of metallicity gradients to major dry-mergers. Astronomy and Astrophysics, 2009, 499, 427-437.	2.1	92
385	Generation of rotationally dominated galaxies by mergers of pressure-supported progenitors. Astronomy and Astrophysics, 2009, 501, L9-L13.	2.1	29
386	Probing the feeding and feedback of activity near and far. Astrophysics and Space Science, 2008, 313, 261-265.	0.5	3
387	Molecular absorptions in high-z objects. Astrophysics and Space Science, 2008, 313, 321-326.	0.5	17
388	Unveiling the chemistry of hot protostellar cores with ALMA. Astrophysics and Space Science, 2008, 313, 45-51.	0.5	26
389	Evolution of galaxies in pairs: Learning from simulations. Astronomische Nachrichten, 2008, 329, 952-955.	0.6	8
390	Galactic and stellar dynamics in the era of high resolution surveys. Astronomische Nachrichten, 2008, 329, 873-874.	0.6	1
391	The molecular polar disc in NGC 2768. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1811-1820.	1.6	32
392	Molecular gas in nearby elliptical radio galaxies. AIP Conference Proceedings, 2008, , .	0.3	2
393	DIVISION VIII: GALAXIES AND THE UNIVERSE. Proceedings of the International Astronomical Union, 2008, 4, 283-285.	0.0	O
394	COMMISSION 28: GALAXIES. Proceedings of the International Astronomical Union, 2008, 4, 286-294.	0.0	0
395	High-resolution molecular line observations of active galaxies. Journal of Physics: Conference Series, 2008, 131, 012031.	0.3	8
396	ATOMIC HYDROGEN PROPERTIES OF ACTIVE GALACTIC NUCLEI HOST GALAXIES: H I IN 16 NUCLEI OF GALAXIES (NUGA) SOURCES. Astronomical Journal, 2008, 135, 232-257.	1.9	39

#	Article	IF	Citations
397	A Multiâ€Transition HCN and HCO ⁺ Study of 12 Nearby Active Galaxies: Active Galactic Nucleus versus Starburst Environments. Astrophysical Journal, 2008, 677, 262-275.	1.6	191
398	Dust content of core-collapse supernova hosts. Astronomy and Astrophysics, 2008, 484, 189-193.	2.1	0
399	Cold gas in the Perseus cluster core: excitation of molecular gas in filaments. Astronomy and Astrophysics, 2008, 484, 317-325.	2.1	60
400	Formation of cold filaments in cooling flow clusters. Astronomy and Astrophysics, 2008, 477, L33-L36.	2.1	96
401	CO investigation of <i>z</i> = 0.4–1.5 galaxies. Astronomy and Astrophysics, 2008, 477, 775-779.	2.1	2
402	On the frequency, intensity, and duration of starburst episodes triggered by galaxy interactions and mergers. Astronomy and Astrophysics, 2008, 492, 31-49.	2.1	220
403	Search for cold gas along radio lobes in the cooling core galaxies MS0735.6+7421 and M87. Astronomy and Astrophysics, 2008, 489, 101-104.	2.1	15
404	Old stellar counter-rotating components in early-type galaxies from elliptical-spiral mergers. Astronomy and Astrophysics, 2008, 477, 437-442.	2.1	19
405	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2008, 479, 377-388.	2.1	20
406	Molecular Gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2008, 482, 133-150.	2.1	62
407	Evolution of spiral galaxies in modified gravity. Astronomy and Astrophysics, 2008, 483, 719-726.	2.1	36
408	Observations of COÂin the eastern filaments of NGC 1275. Astronomy and Astrophysics, 2008, 483, 793-799.	2.1	29
409	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2008, 490, 61-76.	2.1	34
410	Gas flow models in the Milky Way embedded bars. Astronomy and Astrophysics, 2008, 489, 115-133.	2.1	130
411	AGN Feeding and AGN Feedback. Thirty Years of Astronomical Discovery With UKIRT, 2008, , 150-155.	0.3	0
412	Star Formation in Nearby Early-Type Galaxies: Mapping in UV, Optical, and CO. Thirty Years of Astronomical Discovery With UKIRT, 2008, , 312-312.	0.3	0
413	New spectroscopic redshifts from the CDFS and a test of the cosmological relevance of the GOODS-South field. Astronomy and Astrophysics, 2007, 465, 1099-1108.	2.1	109
414	Loss of Mass and Stability of Galaxies in Modified Newtonian Dynamics. Astrophysical Journal, 2007, 665, L101-L104.	1.6	47

#	Article	IF	CITATIONS
415	DIVISION VIII: GALAXIES AND THE UNIVERSE. Proceedings of the International Astronomical Union, 2007, 3, 179-180.	0.0	O
416	Gaseous flows in galaxies. Proceedings of the International Astronomical Union, 2007, 3, 151-160.	0.0	3
417	Disk growth in bulge-dominated galaxies: molecular gas and morphological evolution. Proceedings of the International Astronomical Union, 2007, 3, 173-176.	0.0	O
418	Feeding black holes: tracing gas flows from the outskirts to the centers of galaxies. Proceedings of the International Astronomical Union, 2007, 3, 247-248.	0.0	0
419	COMMISSION 28: GALAXIES. Proceedings of the International Astronomical Union, 2007, 3, 183-183.	0.0	O
420	Tidal dwarf galaxies as a test of fundamental physics. Astronomy and Astrophysics, 2007, 472, L25-L28.	2.1	107
421	Keck spectroscopy and Spitzer space telescope analysis ofÂtheÂouter disk of the Triangulum spiral galaxy M 33. Astronomy and Astrophysics, 2007, 471, 467-474.	2.1	12
422	Molecular clouds in the center of MÂ81. Astronomy and Astrophysics, 2007, 473, 771-781.	2.1	17
423	Multiple minor mergers: formation of elliptical galaxies and constraints for the growth of spiral disks. Astronomy and Astrophysics, 2007, 476, 1179-1190.	2.1	215
424	Star formation in isolated AMIGA galaxies: dynamical influence of bars. Astronomy and Astrophysics, 2007, 474, 43-53.	2.1	44
425	Fueling the central engine of radio galaxies. Astronomy and Astrophysics, 2007, 468, L71-L75.	2.1	24
426	Molecular gas in NUclei of GAlaxies (NUGA): VI. Detection of a molecular gas disk/torus via HCN in the SeyfertÂ2 galaxy NGCÂ6951?. Astronomy and Astrophysics, 2007, 468, L63-L66.	2.1	46
427	The surface brightness of the Galaxy at the solar neighbourhood. Astronomy and Astrophysics, 2007, 462, 965-976.	2.1	4
428	Gas stripping in galaxy clusters: a new SPH simulation approach. Astronomy and Astrophysics, 2007, 472, 5-20.	2.1	54
429	Star formation efficiency in galaxy interactions and mergers: a statistical study. Astronomy and Astrophysics, 2007, 468, 61-81.	2.1	363
430	Lyman-alpha radiative transfer during the epoch of reionization: contribution to 21-cm signal fluctuations. Astronomy and Astrophysics, 2007, 474, 365-374.	2.1	67
431	Evolution of spiral galaxies in modified gravity. Astronomy and Astrophysics, 2007, 464, 517-528.	2.1	81
432	Comment on the thematic issue "Statistical mechanics of non-extensive systems―[C. R. Physique 7 (3–4) (2006)]. Comptes Rendus Physique, 2007, 8, 85.	0.3	1

#	Article	IF	CITATIONS
433	Probing the feeding and feedback of AGN through molecular line maps. New Astronomy Reviews, 2007, 51, 160-167.	5.2	11
434	Molecular gas and star formation in the SAURON early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1795-1807.	1.6	168
435	Molecular content of a Type Ia supernova host galaxy at $z=0.6$. Monthly Notices of the Royal Astronomical Society, 2007, 381, 1508-1514.	1.6	1
436	Global lopsided instability in a purely stellar galactic disc. Monthly Notices of the Royal Astronomical Society, 2007, 382, 419-432.	1.6	24
437	The velocity distribution of Sloan Digital Sky Survey satellites in Modified Newtonian Dynamics. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 383, L1-L4.	1.2	21
438	ISM of Galaxies in Extremely Different Environments: Isolated vs Compact Groups., 2007,, 349-354.		1
439	NUclei of GAlaxies. Astronomy and Astrophysics, 2007, 464, 553-563.	2.1	37
440	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2007, 471, 113-125.	2.1	38
441	Molecular gas in high-velocity clouds: revisited scenario. Astronomy and Astrophysics, 2007, 473, 863-870.	2.1	6
442	The AMIGA sample of isolated galaxies. Astronomy and Astrophysics, 2007, 470, 505-513.	2.1	43
443	Distribution of the molecular absorption in front of the quasar B0218+357. Astronomy and Astrophysics, 2007, 468, L53-L56.	2.1	9
444	The AMIGA sample of isolated galaxies. Astronomy and Astrophysics, 2007, 472, 121-130.	2.1	95
445	Millimeter observations of HCM 6A, a gravitationally lensed Lyα emitting galaxy at $z = 6.56$. Astronomy and Astrophysics, 2007, 475, 513-517.	2.1	12
446	Velocity dispersion around ellipticals in MOND. Astronomy and Astrophysics, 2007, 476, L1-L4.	2.1	76
447	Formation of Cold Molecular Filaments in Cooling Flow Flusters. Globular Clusters - Guides To Galaxies, 2007, , 330-332.	0.1	O
448	AMÂ1934-563: a giant spiral polar-ring galaxy in a triplet. Astronomy and Astrophysics, 2006, 446, 447-458.	2.1	10
449	Stellar Kinematics for the Central Spheroid in the Polar Disk Galaxy NGC 4650A. Astrophysical Journal, 2006, 643, 200-209.	1.6	24
450	Secular evolution in galaxies. Proceedings of the International Astronomical Union, 2006, 2, 19-23.	0.0	1

#	Article	IF	Citations
451	The Building of Galactic Disks: Insights from the Triangulum Spiral Galaxy Messier 33. Proceedings of the International Astronomical Union, 2006, 2, 29-35.	0.0	1
452	Evolution of Spiral Galaxies in Modified Gravity. Proceedings of the International Astronomical Union, 2006, 2, 144-144.	0.0	0
453	Star Formation in Nearby Early-Type Galaxies: Mapping in UV, Optical and CO. Proceedings of the International Astronomical Union, 2006, 2, 304-304.	0.0	0
454	Gas Dynamics in AGN Galaxies: First Results of the HI-NUGA Survey. Proceedings of the International Astronomical Union, 2006, 2, 101-101.	0.0	0
455	An almost head-on collision as the origin of two off-centre rings in the Andromeda galaxy. Nature, 2006, 443, 832-834.	13.7	97
456	Formation and Evolution of Supermassive Black Holes. , 2006, , 159-193.		3
457	Continuum emission in NGCÂ1068 and NGCÂ3147: indications for a turnover in the core spectra. Astronomy and Astrophysics, 2006, 446, 113-120.	2.1	25
458	Massive star formation in the central regions of spiral galaxies. Astronomy and Astrophysics, 2006, 448, 489-498.	2.1	53
459	[CII] emission and star formation in the spiral arms of MÂ31. Astronomy and Astrophysics, 2006, 453, 77-82.	2.1	25
460	Cold molecular gas in the Perseus cluster core. Astronomy and Astrophysics, 2006, 454, 437-445.	2.1	175
461	Coupling the dynamics and the molecular chemistry in the Galactic center. Astronomy and Astrophysics, 2006, 455, 963-969.	2.1	42
462	Probing isotopic ratios atz= 0.89: molecular line absorption in front of the quasar PKS 1830-211. Astronomy and Astrophysics, 2006, 458, 417-426.	2.1	61
463	High resolution observations of a starburst at zÂ=Â0.223: resolved CO(1–0) structure. Astronomy and Astrophysics, 2006, 460, L49-L52.	2.1	7
464	Polar Ring Galaxies and Warps. EAS Publications Series, 2006, 20, 97-104.	0.3	8
465	Division VIII: Galaxies and the Universe. Proceedings of the International Astronomical Union, 2005, 1 , 279-279.	0.0	0
466	Commission 28: Galaxies. Proceedings of the International Astronomical Union, 2005, 1, 281-289.	0.0	0
467	Detections of CO in Late-Type, Low Surface Brightness Spiral Galaxies. Astronomical Journal, 2005, 129, 1849-1862.	1.9	44
468	Spectral and morphological properties of quasar hosts in smoothed particle hydrodynamics simulations of active galactic nucleus feeding by mergers. Monthly Notices of the Royal Astronomical Society, 2005, 359, 1237-1249.	1.6	32

#	Article	IF	CITATIONS
469	Ripples in a Galactic Pond. Scientific American, 2005, 293, 42-49.	1.0	2
470	The lifetime of galactic bars: central mass concentrations and gravity torques. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 364, L18-L22.	1.2	157
471	New multi-zoom method for N-body simulations: application toÂgalaxy growth by accretion. Astronomy and Astrophysics, 2005, 441, 55-67.	2.1	32
472	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2005, 442, 479-493.	2.1	35
473	Galaxy mergers with various mass ratios: Properties of remnants. Astronomy and Astrophysics, 2005, 437, 69-85.	2.1	265
474	Dynamical Triggering of Starbursts. AIP Conference Proceedings, 2005, , .	0.3	4
475	The Molecular Gas in the Nuclear Region of NGC 4569. AIP Conference Proceedings, 2005, , .	0.3	0
476	How to Feed AGN: The NUGA View. AIP Conference Proceedings, 2005, , .	0.3	0
477	Constraints on Changes in Fundamental Constants from a Cosmologically Distant OH Absorber or Emitter. Physical Review Letters, 2005, 95, 261301.	2.9	99
478	New CO observations and simulations of the NGCÂ4438/NGCÂ4435 system. Astronomy and Astrophysics, 2005, 441, 473-489.	2.1	54
479	Galaxy transmutations: The double ringed galaxy ESOÂ474-G26. Astronomy and Astrophysics, 2005, 431, 503-510.	2.1	7
480	Lopsided spiral galaxies: evidence for gas accretion. Astronomy and Astrophysics, 2005, 438, 507-520.	2.1	129
481	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2005, 441, 1011-1030.	2.1	138
482	Glitters of Warm H ₂ in the Cold Interstellar Medium. EAS Publications Series, 2005, 14, 57-66.	0.3	1
483	Efficiency of the Dynamical Mechanism. , 2005, , 167-172.		1
484	Polar Ring Galaxies and the Tully-Fisher relation: implications for the dark halo shape. Symposium - International Astronomical Union, 2004, 220, 405-410.	0.1	0
485	Efficiency of Stripping Mechanisms. Symposium - International Astronomical Union, 2004, 217, 440-451.	0.1	1
486	Galaxy Formation and Baryonic Dark Matter. Symposium - International Astronomical Union, 2004, 220, 219-226.	0.1	2

#	Article	IF	CITATIONS
487	A Reference Sample: ISM of the Most Isolated Galaxies. Symposium - International Astronomical Union, 2004, 217, 220-221.	0.1	O
488	Unequal-mass galaxy merger remnants: Spiral-like morphology but elliptical-like kinematics. Astronomy and Astrophysics, 2004, 418, L27-L30.	2.1	70
489	Mapping the cold molecular gas in a cooling flow cluster: Abell 1795. Astronomy and Astrophysics, 2004, 415, L1-L5.	2.1	43
490	Very luminous carbon stars in the outer disk ofÂtheÂTriangulumÂspiralÂgalaxy. Astronomy and Astrophysics, 2004, 425, L37-L40.	2.1	22
491	Supernova rates and host galaxies properties in the Local Universe. New Astronomy Reviews, 2004, 48, 591-594.	5.2	1
492	Preliminary exploration of the impact of host galaxy dust on cosmological parameters. New Astronomy Reviews, 2004, 48, 577-581.	5.2	0
493	Properties of SN-host galaxies. New Astronomy Reviews, 2004, 48, 583-589.	5.2	13
494	Flat-cored Dark Matter in Cuspy Clusters of Galaxies. Astrophysical Journal, 2004, 607, L75-L78.	1.6	168
495	The second-generation VLT instrument MUSE: science drivers and instrument design. , 2004, , .		18
496	The role of bars. Proceedings of the International Astronomical Union, 2004, 2004, 383-388.	0.0	4
497	Active galaxies-parsec scale radio emission and the surrounding ISM. Proceedings of the International Astronomical Union, 2004, 2004, 327-328.	0.0	1
498	Feeding AGN: New results from the NUGA survey. Proceedings of the International Astronomical Union, 2004, 2004, 427-430.	0.0	2
499	m=1 mode instabilities in nuclear stellar disks around black holes. Proceedings of the International Astronomical Union, 2004, 2004, 465-466.	0.0	0
500	The Hubble Tuning Fork Strikes a New Note. Astrophysics and Space Science Library, 2004, , 15-38.	1.0	4
501	Secular Evolution Versus Hierarchical Merging: Galaxy Evolution Along the Hubble Sequence, in the Field and Rich Environments. Astrophysics and Space Science Library, 2004, , 57-74.	1.0	5
502	Molecular Gas in Classical Elliptical Radio Galaxies. Astrophysics and Space Science Library, 2004, , 783-784.	1.0	1
503	Molecular gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2004, 414, 857-872.	2.1	47
504	Kinematics of tidal tails in interacting galaxies: Tidal dwarf galaxies and projection effects. Astronomy and Astrophysics, 2004, 425, 813-823.	2.1	87

#	Article	IF	Citations
505	Bar Dissolution and Reformation Mechanisms. Astrophysics and Space Science Library, 2004, , 165-174.	1.0	1
506	Molecules in Galaxies at All Redshifts. , 2004, , 105-212.		0
507	Tidal Shocks on Globular Clusters. , 2004, , 272-272.		0
508	Formation of polar ring galaxies. Astronomy and Astrophysics, 2003, 401, 817-833.	2.1	137
509	On the global structure of distant galactic disks. Astronomy and Astrophysics, 2003, 399, 879-887.	2.1	29
510	Galactic disc formation from cold fractal gas. Symposium - International Astronomical Union, 2003, 208, 443-444.	0.1	0
511	Molecular Gas in NUclei of GAlaxies (NUGA). Astronomy and Astrophysics, 2003, 407, 485-502.	2.1	102
512	Numerical simulations of central stellar velocity dispersion drops in disc galaxies. Astronomy and Astrophysics, 2003, 409, 469-477.	2.1	58
513	Cold molecular gas in cooling flow clusters of galaxies. Astronomy and Astrophysics, 2003, 412, 657-667.	2.1	187
514	Polar Ring Galaxies and the Tullyâ€Fisher Relation: Implications for the Dark Halo Shape. Astrophysical Journal, 2003, 585, 730-738.	1.6	48
515	Gravitational torques in spiral galaxies: Gas accretion as a driving mechanism of galactic evolution. Astronomy and Astrophysics, 2002, 394, L35-L38.	2.1	68
516	Properties of dark matter haloes. New Astronomy Reviews, 2002, 46, 755-766.	5.2	37
517	Chemodynamical evolution of interacting galaxies. Astrophysics and Space Science, 2002, 281, 383-387.	0.5	6
518	Statistics of galaxy warps in the HDF North and South. Astronomy and Astrophysics, 2002, 382, 513-521.	2.1	41
519	A neutral hydrogen survey of polar ring galaxies. Astronomy and Astrophysics, 2002, 386, 140-148.	2.1	16
520	Dynamical friction on cold fractal gas clouds. Applications to disc formation. Astronomy and Astrophysics, 2002, 387, 98-107.	2.1	5
521	Mapping the submillimeter spiral wave in NGCÂ6946. Astronomy and Astrophysics, 2002, 388, 446-457.	2.1	8
522	Formation and evolution of galactic disks with a multiphase numerical model. Astronomy and Astrophysics, 2002, 388, 826-841.	2.1	79

#	Article	IF	CITATIONS
523	Gas accretion on spiral galaxies: Bar formation and renewal. Astronomy and Astrophysics, 2002, 392, 83-102.	2.1	267
524	Midâ€Infrared and CO Observations of the Infrared/Xâ€Ray Luminous Seyfert 1 Galaxy NGC 985: The Making or Breaking of a ULIRG?. Astrophysical Journal, 2002, 566, 682-698.	1.6	16
525	A Mega Integral Field Spectrograph for the VLT. Globular Clusters - Guides To Galaxies, 2002, , 108-117.	0.1	1
526	Chemodynamical Evolution of Interacting Galaxies. , 2002, , 383-388.		0
527	The M 31 double nucleus probed with OASIS and HST. Astronomy and Astrophysics, 2001, 371, 409-428.	2.1	72
528	Dynamics of Ringed Barred Spiral Galaxies. I. Surface Photometry and Kinematics of NGC 1433 and NGC 6300. Astronomical Journal, 2001, 121, 225-243.	1.9	31
529	Continuous stellar mass-loss inN-body models of galaxies. Astronomy and Astrophysics, 2001, 376, 85-97.	2.1	65
530	IRAM observations of JVAS/CLASS gravitational lenses. Monthly Notices of the Royal Astronomical Society, 2001, 325, 273-277.	1.6	1
531	Improved constraints on possible variation of physical constants from H I 21-cm and molecular QSO absorption lines. Monthly Notices of the Royal Astronomical Society, 2001, 327, 1244-1248.	1.6	100
532	A Model for the Cartwheel Ring Galaxy. Astrophysics and Space Science, 2001, 276, 1141-1149.	0.5	28
533	2D kinematics of nuclear bars. Astrophysics and Space Science, 2001, 277, 455-455.	0.5	2
534	Sub-kpc stellar kinematics of AGN as revealed by ISAAC (VLT/ANTU) spectroscopy. Astrophysics and Space Science, 2001, 277, 469-469.	0.5	0
535	Molecular Gas in Galaxies. Astrophysics and Space Science, 2001, 277, 29-38.	0.5	5
536	Structure, Dynamics and Environment of Galaxies. Astrophysics and Space Science, 2001, 277, 501-504.	0.5	0
537	Molecular Gas in Nearby Powerful Radio Galaxies. , 2001, , 185-190.		3
538	Deep submillimeter images of NGC 7331; dust at the periphery of spiral disks. Astronomy and Astrophysics, 2001, 366, 451-465.	2.1	20
539	Dynamics of embedded bars and the connection with AGN. Astronomy and Astrophysics, 2001, 368, 52-63.	2.1	127
540	Atomic and molecular gas in the merger galaxy NGC 1316 (Fornax A) and its environment. Astronomy and Astrophysics, 2001, 376, 837-852.	2.1	47

#	Article	IF	CITATIONS
541	FUELING THE AGN., 2001,, 223-278.		64
542	Renormalization Group Flow and Fragmentation in the Self-Gravitating Thermal Gas., 2001,, 449-479.		0
543	HIGH REDSHIFT CO LINE EMISSION: PERSPECTIVES. , 2001, , .		0
544	Molecular Gas in the Powerful Radio Galaxies 3C 31 and 3C 264: Major or Minor Mergers?. Astrophysical Journal, 2000, 545, L93-L97.	1.6	32
545	Extragalactic H ₂ and its Variable Relation to CO., 2000,, 293-296.		29
546	H ₂ in Galaxies., 2000,, 275-284.		8
547	Minor Mergers and the Formation of Shell Galaxies. International Astronomical Union Colloquium, 2000, 174, 273-276.	0.1	1
548	Dynamics of Galaxies: From the Early Universe to the Present1. Publications of the Astronomical Society of the Pacific, 2000, 112, 423-423.	1.0	61
549	A neutral hydrogen survey of polar ring galaxies. Astronomy and Astrophysics, 2000, 141, 385-408.	2.1	39
550	Gas and Dust in Protogalaxies. , 2000, , 405-421.		1
551	FRACTAL STRUCTURES AND SCALING LAWS IN THE UNIVERSE: STATISTICAL MECHANICS OF THE SELF-GRAVITATING GAS. , 2000, , .		0
552	Limits on the Variation of Physical Constants Derived from Molecular Absorption Lines. Symposium - International Astronomical Union, 1999, 183, 167-167.	0.1	3
553	CMB and molecules at high redshift. , 1999, , .		0
554	Renormalization group flow and fragmentation in the self-gravitating thermal gas. Physical Review D, 1999, 59, .	1.6	15
555	Fractal structures and scaling laws in the universe. Statistical mechanics of the self-gravitating gas. Chaos, Solitons and Fractals, 1999, 10, 329-343.	2.5	4
556	Time-Scale for Accretion of Matter. , 1999, 265, 417-424.		3
557	Gas and Dust in Protogalaxies. Astrophysics and Space Science, 1999, 269/270, 405-421.	0.5	4
558	Dust and Molecules at High Redshift. Globular Clusters - Guides To Galaxies, 1999, , 213-221.	0.1	1

#	Article	IF	CITATIONS
559	Extended Gas in Interacting Systems. , 1999, , 89-96.		1
560	Spiral galaxies with large optical warps. Astronomy and Astrophysics, 1999, 138, 101-107.	2.1	24
561	Molecular Gas in Hickson Compact Groups. , 1999, , 414-414.		0
562	Fractal Structures Driven by Self-gravity: Molecular Clouds and the Universe., 1998, 72, 91-127.		12
563	The Fractal Structure of the Universe: A New Field Theory Approach. Astrophysical Journal, 1998, 500, 8-13.	1.6	33
564	6.1. Non-axisymmetric dynamics in galaxy centers. Symposium - International Astronomical Union, 1998, 184, 257-264.	0.1	2
565	Starburst Triggering and Environmental Effects. , 1998, , 175-218.		2
566	Fractal Dimensions and Scaling Laws in the Interstellar Medium and Galaxy Distributions: A New Field Theory Approach., 1998,, 647-681.		1
567	The Complex Molecular Absorption Line System atz= 0.886 toward PKS 1830â^'211. Astrophysical Journal, 1998, 500, 129-137.	1.6	73
568	N-body simulations with perturbation particles – II. Dynamical friction at a distance. Monthly Notices of the Royal Astronomical Society, 1997, 284, 45-57.	1.6	7
569	Tidal Thickening of Galaxy Disks. Globular Clusters - Guides To Galaxies, 1997, , 387-389.	0.1	1
570	Near-IR photometry of disk galaxies: Search for nuclear isophotal twist and double bars. Astronomy and Astrophysics, 1997, 125, 479-496.	2.1	80
571	New H I Observations of the Prototype Polar Ring Galaxy NGC 4650A. Astronomical Journal, 1997, 113, 585.	1.9	50
572	Detection of Water at [CLC][ITAL]z[/ITAL][/CLC] = 0.685 toward B0218+357. Astrophysical Journal, 1997, 486, L79-L82.	1.6	49
573	Fractal dimensions and scaling laws in the interstellar medium: A new field theory approach. Physical Review D, 1996, 54, 6008-6020.	1.6	38
574	Comparison with External Galaxies Dynamics. Symposium - International Astronomical Union, 1996, 169, 133-143.	0.1	1
575	Ring and Lens Formation. International Astronomical Union Colloquium, 1996, 157, 286-298.	0.1	0
576	Modelling the Structure of the Ringed Spiral NGC 4736. International Astronomical Union Colloquium, 1996, 157, 253-255.	0.1	0

#	Article	IF	Citations
577	Rings, lenses, nuclear bars: the fundamental role of gas. , 1996, , 101-123.		O
578	Dust-reddened Quasars. Publications of the Astronomical Society of Australia, 1996, 13, 183-184.	1.3	2
579	The redshift of the gravitational lens of PKS1830–211 determined from molecular absorption lines. Nature, 1996, 379, 139-141.	13.7	159
580	Self-gravity as an explanation of the fractal structure of the interstellar medium. Nature, 1996, 383, 56-58.	13.7	67
581	Molecular Lines in Absorption (and Emission) From Distant Galaxies and Quasars. Globular Clusters - Guides To Galaxies, 1996, , 86-94.	0.1	5
582	Secular Evolution of Galaxy Morphologies. Astrophysics and Space Science Library, 1996, , 291-300.	1.0	8
583	Very Cold Gas and Dark Matter. Astrophysics and Space Science Library, 1996, , 451-466.	1.0	3
584	Comparison with External Galaxies Dynamics. , 1996, , 133-143.		1
585	Absorption Measurements of Molecular Gas. Astrophysics and Space Science Library, 1996, , 215-226.	1.0	6
586	Tidally-triggered disk thickening. I. Observations. Astronomy and Astrophysics, 1996, 116, 417-428.	2.1	9
587	Molecular gas in early-type galaxies. Globular Clusters - Guides To Galaxies, 1996, , 144-153.	0.1	0
588	Dynamical Studies of Spiral Galaxies. Globular Clusters - Guides To Galaxies, 1996, , 117-124.	0.1	0
589	About the presence of water in IRAS 10214+4724. , 1995, , 243-244.		0
590	Cold molecular gas as dark matter candidate in galaxies and clusters. AIP Conference Proceedings, 1995, , .	0.3	0
591	Polar ring spiral galaxy NGC 660. Astronomical Journal, 1995, 109, 942.	1.9	47
592	NGC 7217: A Spheroid-dominated, Early-Type Resonance Ring Spiral Galaxy. Astrophysical Journal, 1995, 450, 593.	1.6	45
593	Observations of Gas in Interacting Galaxies. , 1995, , 521-526.		0
594	Massive Gas Rings in the Nuclei of Barred Spiral Galaxies (Poster paper). , 1994, , 185-186.		0

#	Article	IF	CITATIONS
595	Gas Inflow due to Perpendicular Orbits in Barred Potentials. , 1994, , 170-174.		34
596	Interferometric Observations of HCO+ and HCN in the Nuclear Region of IC 342 and Maffei 2. International Astronomical Union Colloquium, 1994, 140, 336-338.	0.1	4
597	The Polar Ring Starburst Galaxy NGC 660. International Astronomical Union Colloquium, 1994, 140, 347-348.	0.1	O
598	Multistring solutions by soliton methods in de Sitter spacetime. Physical Review D, 1994, 50, 2754-2768.	1.6	32
599	Star Formation in Polar-Ring Galaxies. , 1994, , 258-262.		1
600	Large Scale Gravitational Instability and Galactic Viscosity (Poster paper). , 1994, , 189-190.		0
601	CO Observations of Nearby Active Galaxies. , 1994, , 228-229.		0
602	Large-Scale Dynamics of Molecular Clouds in the Interstellar Medium of Disk Galaxies. , 1994, , 271-274.		0
603	N-body simulations with perturbation particles - I. Method and tests. Monthly Notices of the Royal Astronomical Society, 1993, 262, 1013-1022.	1.6	21
604	Interactions: Weak. Astrophysics and Space Science Library, 1992, , 265-276.	1.0	0
605	Distribution of CO in the Milky Way. Annual Review of Astronomy and Astrophysics, 1991, 29, 195-237.	8.1	178
606	Vectorising the smooth particle hydrodynamics. Journal of Computational Physics, 1991, 97, 103-126.	1.9	4
607	Detection of interstellar H3O(+) - A confirming line. Astrophysical Journal, 1991, 380, L79.	1.6	54
608	Gas Dynamics in a Tidal Interaction: Formation of Rings. , 1990, , 205-209.		16
609	H3O+ Revisited. Astrophysics and Space Science Library, 1990, , 107-108.	1.0	0
610	CO Observations of 2nd quadrant IRAS Sources. , 1989, , 127-129.		0
611	Observations of the J = $1\hat{a}$ °0 CO lines in the Mars atmosphere: Radiodetection of 13CO and monitoring of 12CO. Icarus, 1989, 77, 414-438.	1.1	16
612	The influence of galaxy interactions on stellar bars. , 1989, , 219-220.		0

#	Article	IF	CITATIONS
613	Molecular bars in NGC 6946 and maffei 2 ?. , 1988, , 387-388.		1
614	GMC formation in spiral arms triggered by bars or companions. , 1988, , 441-445.		2
615	Influence of Large-Scale Dynamics Upon Star Formation in Galaxies. , 1988, , 475-494.		35
616	Molecular clouds in the main disk and warped plane of M31., 1988,, 399-402.		0
617	CO emission from messier 81., 1988, , 403-404.		0
618	Hydrodynamical Simulation of Bipolar Flows. , 1987, , 378-379.		0
619	Molecular Clouds in Barred Galaxies. , 1987, , 632-633.		0
620	The interstellar clouds toward 3C 154 and 3C 353. Astrophysical Journal, 1987, 322, 960.	1.6	0
621	Can shells help to distinguish prolate from oblate elliptical galaxies?. Lecture Notes in Physics, 1985, , 151-154.	0.3	1
622	High resolution CO observations in M31. Lecture Notes in Physics, 1985, , 253-256.	0.3	0
623	The Response of the Ensemble of Molecular Clouds to Bar Forcing in a Galaxy Disk. Symposium - International Astronomical Union, 1983, 100, 225-226.	0.1	0
624	Cold Molecular Material in the Galaxy. , 1983, , 45-46.		0
625	On the possibility of nucleosynthesis in any matter-antimatter symmetric cosmology. Astrophysics and Space Science, 1975, 37, 151-167.	0.5	7
626	Nucleosynthesis and matter–antimatter cosmologies. Nature, 1975, 253, 25-26.	13.7	7
627	Molecular gas in SAURON early-type galaxies: detection of 13CO and HCN emissionâ [~] Monthly Notices of the Royal Astronomical Society, 0, 407, 2261-2268.	1.6	33
628	A study of the gas-star formation relation over cosmic timea~ Monthly Notices of the Royal Astronomical Society, 0, 407, 2091-2108.	1.6	776
629	1321+045: A compact steepâ€spectrum radio source in a coolâ€core galaxy cluster. Astronomische Nachrichten, 0, , .	0.6	0
630	CO kinematics unveil outflows plausibly driven by a young jet in the gigahertz peaked radio core of NGC 6328. Astronomische Nachrichten, 0, , .	0.6	2

ARTICLE IF CITATIONS
631 Tidal Tails Around Galactic Globular Clusters., 0,, 369-374.