Richard Ipsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8453777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water mobility and microstructure of acidified milk model gels with added whey protein ingredients. Food Hydrocolloids, 2022, 127, 107548.	10.7	6
2	Measurement of water-holding capacity in fermented milk using near-infrared spectroscopy combined with chemometric methods. Journal of Dairy Research, 2022, 89, 194-200.	1.4	2
3	Effect of thawing procedures on the properties of frozen and subsequently thawed casein concentrate. International Dairy Journal, 2021, 112, 104860.	3.0	7
4	Proteolytic activity of selected commercial Lactobacillus helveticus strains on soy protein isolates. Food Chemistry, 2021, 340, 128152.	8.2	18
5	Interaction between added whey protein ingredients and native milk components in non-fat acidified model systems. International Dairy Journal, 2021, 115, 104946.	3.0	8
6	Effects of homogenization and pH adjustment of cheese feed without emulsifying salt on the physical properties of high fat cheese powder. Powder Technology, 2021, 378, 227-236.	4.2	5
7	Impact of Alginate Mannuronic-Guluronic Acid Contents and pH on Protein Binding Capacity and Complex Size. Biomacromolecules, 2021, 22, 649-660.	5.4	19
8	Cheese powders as emulsifier in mayonnaise. LWT - Food Science and Technology, 2021, 151, 112188.	5.2	1
9	Understanding the fermentation factors affecting the separability of fermented milk: A model system study. Food Structure, 2021, 30, 100232.	4.5	3
10	Reconstitution behavior of cheese powders: Effects of cheese age and dairy ingredients on wettability, dispersibility and total rehydration. Journal of Food Engineering, 2020, 270, 109763.	5.2	13
11	Effect of cheese maturation on physical stability, flow properties and microstructure of oil-in-water emulsions stabilised with cheese powders. International Dairy Journal, 2020, 103, 104630.	3.0	4
12	Stabilization of directly acidified protein drinks by single and mixed hydrocolloids—combining particle size, rheology, tribology, and sensory data. Food Science and Nutrition, 2020, 8, 6433-6444.	3.4	8
13	Towards the manufacture of camembert cheese powder: Characteristics of cheese feeds without emulsifying salts. LWT - Food Science and Technology, 2020, 127, 109412.	5.2	5
14	Rheological and water holding alterations in mixed gels prepared from whey proteins and rapeseed proteins. Food Hydrocolloids, 2019, 87, 723-733.	10.7	22
15	Contrasting Assemblies of Oppositely Charged Proteins. Langmuir, 2019, 35, 9923-9933.	3.5	14
16	Cheese powder as emulsifier in oil-in-water (O/W) emulsions: Effect of powder concentration and added emulsifying salt during cheese powder manufacture. LWT - Food Science and Technology, 2019, 103, 266-270.	5.2	3
17	Microparticles formed by heating potato protein—polysaccharide electrostatic complexes. Journal of Food Engineering, 2019, 263, 79-86.	5.2	8
18	Metagenomic analysis of bacterial community composition in <i>Dhanaan</i> : Ethiopian traditional fermented camel milk. FEMS Microbiology Letters, 2019, 366, .	1.8	16

#	Article	IF	CITATIONS
19	The influence of pH, protein concentration and calcium ratio on the formation and structure of nanotubes from partially hydrolyzed bovine α-lactalbumin. Soft Matter, 2019, 15, 4787-4796.	2.7	19
20	Effect of heat treatment on denaturation of whey protein and resultant rennetability of camel milk. LWT - Food Science and Technology, 2019, 101, 404-409.	5.2	27
21	Associative phase separation of potato protein and anionic polysaccharides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566, 104-112.	4.7	16
22	Effect of starter cultures on properties of soft white cheese made from camel (Camelus dromedarius) milk. Journal of Dairy Science, 2019, 102, 1108-1115.	3.4	44
23	Metagenomic analysis of bacterial community composition in Dhanaan: Ethiopian traditional fermented camel milk. FEMS Microbiology Letters, 2019, 366, i127-i132.	1.8	0
24	Rheological and sensory properties and aroma compounds formed during ripening of soft brined cheese made from camel milk. International Dairy Journal, 2018, 81, 122-130.	3.0	39
25	Rheology and microstructure of low-fat yoghurt produced with whey protein microparticles as fat replacer. International Dairy Journal, 2018, 81, 62-71.	3.0	60
26	Interaction between structurally different heteroexopolysaccharides and β-lactoglobulin studied by solution scattering and analytical ultracentrifugation. International Journal of Biological Macromolecules, 2018, 111, 746-754.	7.5	4
27	Isoenergic modification of whey protein structure by denaturation and crosslinking using transglutaminase. Food and Function, 2018, 9, 797-805.	4.6	24
28	Partial replacement of whey proteins by rapeseed proteins in heat-induced gelled systems: Effect of pH. Food Hydrocolloids, 2018, 77, 397-406.	10.7	41
29	Comparison of the acidification activities of commercial starter cultures in camel and bovine milk. LWT - Food Science and Technology, 2018, 89, 123-127.	5.2	27
30	The effect of protein-to-alginate ratio on inÂvitro gastric digestion of nanoparticulated whey protein. International Dairy Journal, 2018, 77, 10-18.	3.0	23
31	Physical and functional properties of cheese powders affected by sweet whey powder addition before or after spray drying. Powder Technology, 2018, 323, 139-148.	4.2	35
32	The effect of alginates on <i>inÂvitro</i> gastric digestion of particulated whey protein. International Journal of Dairy Technology, 2018, 71, 469-477.	2.8	10
33	Beverage clouding agents: Review of principles and current manufacturing. Food Reviews International, 2018, 34, 613-638.	8.4	11
34	Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with I²-lactoglobulin. Food Hydrocolloids, 2018, 75, 157-163.	10.7	24
35	Caseinâ€Based Powders: Characteristics and Rehydration Properties. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 240-254.	11.7	38
36	Cheese feed to powder: Effects of cheese age, added dairy ingredients and spray drying temperature on properties of cheese powders. Journal of Food Engineering, 2018, 237, 215-225.	5.2	24

#	Article	IF	CITATIONS
37	Revealing the Dimeric Crystal and Solution Structure of β-Lactoglobulin at pH 4 and Its pH and Salt Dependent Monomer–Dimer Equilibrium. Biomacromolecules, 2018, 19, 2905-2912.	5.4	20
38	Physicochemical properties of milk protein ingredients and their acid gelation behaviour in different ionic environments. International Dairy Journal, 2018, 85, 16-20.	3.0	5
39	Interactions in heated milk model systems with different ratios of nanoparticulated whey protein at varying pH. International Dairy Journal, 2017, 74, 57-62.	3.0	12
40	The influence of raw material, added emulsifying salt and spray drying on cheese powder structure and hydration properties. International Dairy Journal, 2017, 74, 27-38.	3.0	23
41	Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps ,. American Journal of Clinical Nutrition, 2017, 105, 1033-1045.	4.7	267
42	Effect of homogenisation in formation of thermally induced aggregates in a non- and low- fat milk model system with microparticulated whey proteins. Journal of Dairy Research, 2017, 84, 229-238.	1.4	5
43	Characterisation of lactic acid bacteria in spontaneously fermented camel milk and selection of strains for fermentation of camel milk. International Dairy Journal, 2017, 73, 19-24.	3.0	38
44	Effects of different dairy ingredients on the rheological behaviour and stability of hot cheese emulsions. International Dairy Journal, 2017, 71, 35-42.	3.0	22
45	Revealing the Compact Structure of Lactic Acid Bacterial Heteroexopolysaccharides by SAXS and DLS. Biomacromolecules, 2017, 18, 747-756.	5.4	11
46	Effect of repeat unit structure and molecular mass of lactic acid bacteria hetero-exopolysaccharides on binding to milk proteins. Carbohydrate Polymers, 2017, 177, 406-414.	10.2	14
47	Microparticulated whey proteins for improving dairy product texture. International Dairy Journal, 2017, 67, 73-79.	3.0	60
48	Processing Challenges and Opportunities of Camel Dairy Products. International Journal of Food Science, 2017, 2017, 1-8.	2.0	52
49	Functional and technological properties of camel milk proteins: a review. Journal of Dairy Research, 2016, 83, 422-429.	1.4	92
50	The role of exopolysaccharide-producing cultures and whey protein ingredients in yoghurt. LWT - Food Science and Technology, 2016, 72, 189-198.	5.2	37
51	Effects of disulphide bonds between added whey protein aggregates and other milk components on the rheological properties of acidified milk model systems. International Dairy Journal, 2016, 59, 1-9.	3.0	16
52	Interactions of milk proteins with low and high acyl gellan: Effect on microstructure and textural properties of acidified milk. Food Hydrocolloids, 2016, 60, 225-231.	10.7	33
53	Effects of added whey protein aggregates on textural and microstructural properties of acidified milk model systems. International Dairy Journal, 2016, 62, 43-52.	3.0	16
54	The effect of age on Cheddar cheese melting, rheology and structure, and on the stability of feed for cheese powder manufacture. International Dairy Journal, 2016, 55, 38-43.	3.0	25

#	Article	IF	CITATIONS
55	Factors influencing the gelation and rennetability of camel milk using camel chymosin. International Dairy Journal, 2016, 60, 62-69.	3.0	25
56	Effect of exopolysaccharide-producing starter cultures and post-fermentation mechanical treatment on textural properties and microstructure of low fat yoghurt. International Dairy Journal, 2016, 53, 10-19.	3.0	41
57	Formation of nanotubes and gels at a broad pH range upon partial hydrolysis of bovine α-lactalbumin. International Dairy Journal, 2016, 52, 72-81.	3.0	15
58	Protein lactosylation in <scp>UHT</scp> milk during storage measured by Liquid Chromatography–Mass Spectrometry and quantification of furosine. International Journal of Dairy Technology, 2015, 68, 486-494.	2.8	31
59	Emulsifying salt increase stability of cheese emulsions during holding. LWT - Food Science and Technology, 2015, 62, 362-365.	5.2	27
60	Pilot-scale purification of α-lactalbumin from enriched whey protein concentrate by anion-exchange chromatography and ultrafiltration. Dairy Science and Technology, 2015, 95, 353-368.	2.2	20
61	Further development of a method for visualisation of exopolysaccharides in yoghurt using fluorescent conjugates. International Dairy Journal, 2015, 46, 88-95.	3.0	14
62	Dynamic ultra-high pressure homogenisation of whey protein-depleted milk concentrate. International Dairy Journal, 2015, 46, 12-21.	3.0	13
63	Steam-frothing of milk for coffee: Evaluation for foam properties using video analysis and feature extraction. International Dairy Journal, 2015, 51, 84-91.	3.0	7
64	Dynamic ultra-high pressure homogenisation of milk casein concentrates: Influence of casein content. Innovative Food Science and Emerging Technologies, 2014, 26, 143-152.	5.6	16
65	The determination of plasmin and plasminogen-derived activity in turbid samples from various dairy products using an optimised spectrophotometric method. International Dairy Journal, 2014, 38, 74-80.	3.0	16
66	Plasmin Activity in UHT Milk: Relationship between Proteolysis, Age Gelation, and Bitterness. Journal of Agricultural and Food Chemistry, 2014, 62, 6852-6860.	5.2	65
67	Investigation of Consecutive Fouling and Cleaning Cycles of Ultrafiltration Membranes Used for Whey Processing. International Journal of Food Engineering, 2014, 10, 367-381.	1.5	12
68	Plasmin activity as a possible cause for age gelation in UHT milk produced by direct steam infusion. International Dairy Journal, 2014, 38, 199-207.	3.0	47
69	Stability of cheese emulsions for spray drying. International Dairy Journal, 2014, 39, 60-63.	3.0	12
70	Stability of whippable oil-in-water emulsions: Effect of monoglycerides on crystallization of palm kernel oil. Food Research International, 2013, 54, 1738-1745.	6.2	46
71	Characterisation of fractionated skim milk with small-angle X-ray scattering. International Dairy Journal, 2013, 33, 1-9.	3.0	18
72	Binding Interactions Between α-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance. Food Biophysics, 2012, 7, 220-226.	3.0	15

#	Article	IF	CITATIONS
73	Using fractal image analysis to characterize microstructure of low-fat stirred yoghurt manufactured with microparticulated whey protein. Journal of Food Engineering, 2012, 109, 721-729.	5.2	52
74	Effect of microparticulated whey protein with varying content of denatured protein on the rheological and sensory characteristics of low-fat yoghurt. International Dairy Journal, 2011, 21, 645-655.	3.0	77
75	Dynamic visualization and microstructure of syneresis of cheese curd during mechanical treatment. International Dairy Journal, 2011, 21, 711-717.	3.0	15
76	Composition of volatile compounds in bovine milk heat treated by instant infusion pasteurisation and their correlation to sensory analysis. International Journal of Dairy Technology, 2011, 64, 34-44.	2.8	32
77	Using Surface Plasmon Resonance Technology to Screen Interactions Between Exopolysaccharides and Milk Proteins. Food Biophysics, 2011, 6, 468-473.	3.0	10
78	Stabilisation of acidified skimmed milk with HM pectin. Food Hydrocolloids, 2010, 24, 291-299.	10.7	95
79	Instant infusion pasteurisation of bovine milk. II. Effects on indigenous milk enzymes activity and whey protein denaturation. International Journal of Dairy Technology, 2010, 63, 197-208.	2.8	15
80	Instant infusion pasteurisation of bovine milk. I. Effects on bacterial inactivation and physical–chemical properties. International Journal of Dairy Technology, 2009, 62, 484-492.	2.8	14
81	Sensory and Instrumental Characterization of Low-Fat and Non-Fat Cream Cheese. International Journal of Food Properties, 2009, 12, 211-227.	3.0	23
82	Sensory and rheological characterization of acidified milk drinks. Food Hydrocolloids, 2008, 22, 798-806.	10.7	84
83	Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. International Dairy Journal, 2007, 17, 302-307.	3.0	111
84	Water mobility in acidified milk drinks studied by low-field 1H NMR. International Dairy Journal, 2007, 17, 294-301.	3.0	51
85	Interactions between Carrageenans and Milk Proteins: A Microstructural and Rheological Study. Biomacromolecules, 2007, 8, 729-736.	5.4	46
86	Modification of Milk and Whey Surface Properties by Enzymatic Hydrolysis of Milk Phospholipids. Journal of Agricultural and Food Chemistry, 2007, 55, 2970-2978.	5.2	34
87	Self-assembly of partially hydrolysed α-lactalbumin. Biotechnology Advances, 2007, 25, 602-605.	11.7	95
88	Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. International Dairy Journal, 2006, 16, 111-118.	3.0	111
89	SENSORY AND RHEOLOGICAL CHARACTERIZATION OF LOW-FAT STIRRED YOGURT. Journal of Texture Studies, 2006, 37, 276-299.	2.5	72
90	Interactions between EPS-producing Streptococcus thermophilus strains in mixed yoghurt cultures. Journal of Dairy Research, 2006, 73, 385-393.	1.4	52

#	Article	IF	CITATIONS
91	RELATION BETWEEN SENSORY TEXTURE PROPERTIES AND EXOPOLYSACCHARIDE DISTRIBUTION IN SET AND IN STIRRED YOGHURTS PRODUCED WITH DIFFERENT STARTER CULTURES. Journal of Texture Studies, 2005, 36, 174-189.	2.5	80
92	Formation of amyloid-like fibrils upon limited proteolysis of bovine α-lactalbumin. International Dairy Journal, 2005, 15, 219-229.	3.0	44
93	Protease-induced aggregation of bovine α-lactalbumin: Identification of the primary associating fragment. Journal of Dairy Research, 2004, 71, 88-96.	1.4	15
94	Influence of Calcium on the Self-Assembly of Partially Hydrolyzed α-Lactalbumin. Langmuir, 2004, 20, 6841-6846.	3.5	69
95	Molecular self-assembly of partially hydrolysed α-lactalbumin resulting in strong gels with a novel microstructure. Journal of Dairy Research, 2001, 68, 277-286.	1.4	72
96	Effect of limited hydrolysis on the interfacial rheology and foaming properties of β-lactoglobulin A. Colloids and Surfaces B: Biointerfaces, 2001, 21, 173-178.	5.0	59
97	Standardized reaction times used to describe the mechanism of enzyme-induced gelation in whey protein systems. Journal of Dairy Research, 2000, 67, 403-413.	1.4	19
98	Effect of partial hydrolysis with an immobilized proteinase on thermal gelation properties of β-lactoglobulin B. Journal of Dairy Research, 2000, 67, 597-608.	1.4	12
99	Aggregate Formation during Hydrolysis of \hat{l}^2 -Lactoglobulin with a Clu and Asp Specific Protease fromBacillus licheniformis. Journal of Agricultural and Food Chemistry, 1997, 45, 4889-4896.	5.2	62
100	Mixed gels made from protein and κ-carrageenan. Carbohydrate Polymers, 1995, 28, 337-339.	10.2	24