François Ganachaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8453718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteinâ€Based Encapsulation Strategies: Toward Micro―and Nanoscale Carriers with Increased Functionality. Small Science, 2022, 2, .	9.9	13
2	Photocatalyzed Hydrosilylation in Silicone Chemistry. Industrial & Engineering Chemistry Research, 2022, 61, 7679-7698.	3.7	8
3	Zwitterionic Silicone Materials Derived from Azaâ€Michael Reaction of Aminoâ€Functional PDMS with Acrylic Acid. Macromolecular Rapid Communications, 2021, 42, e2000372.	3.9	13
4	Macromolecular Additives to Turn a Thermoplastic Elastomer into a Self-Healing Material. Macromolecules, 2021, 54, 888-895.	4.8	25
5	Hydrophilic and Double Hydrophilic/Hydrophobic Microcapsules using a Single, Thermally Responsive, Self-Sorting Dispersant. ACS Applied Polymer Materials, 2021, 3, 1707-1711.	4.4	1
6	Nanocapsules Produced by Nanoprecipitation of Designed Suckerin-Silk Fusion Proteins. ACS Macro Letters, 2021, 10, 628-634.	4.8	10
7	Thermoplastic silicone elastomers as materials exhibiting high mechanical properties and/or self-healing propensity. Journal of Adhesion Science and Technology, 2021, 35, 2723-2735.	2.6	5
8	Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies. Advances in Colloid and Interface Science, 2021, 294, 102474.	14.7	55
9	â€~Sweet as a Nut': Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Progress in Polymer Science, 2021, 120, 101429.	24.7	16
10	Functional Hybrid Glyconanocapsules by a One-Pot Nanoprecipitation Process. Biomacromolecules, 2020, 21, 4591-4598.	5.4	8
11	Programmable Hierarchical Construction of Mixed/Multilayered Polysaccharide Nanocapsules through Simultaneous/Sequential Nanoprecipitation Steps. Biomacromolecules, 2019, 20, 3915-3923.	5.4	18
12	Central Role of Bicarbonate Anions in Charging Water/Hydrophobic Interfaces. Journal of Physical Chemistry Letters, 2018, 9, 96-103.	4.6	45
13	Freeze/Thaw-Induced Carbon Dioxide Trapping Promotes Emulsification of Oil in Water. Journal of Physical Chemistry Letters, 2018, 9, 5998-6002.	4.6	3
14	General and Scalable Approach to Bright, Stable, and Functional AIE Fluorogen Colloidal Nanocrystals for in Vivo Imaging. ACS Applied Materials & Interfaces, 2018, 10, 25154-25165.	8.0	35
15	The aza-Michael reaction as an alternative strategy to generate advanced silicon-based (macro)molecules and materials. Progress in Polymer Science, 2017, 72, 61-110.	24.7	86
16	Nanoprecipitation of PHPMA (Co)Polymers into Nanocapsules Displaying Tunable Compositions, Dimensions, and Surface Properties. ACS Macro Letters, 2017, 6, 447-451.	4.8	13
17	Going beyond the barriers of aza-Michael reactions: controlling the selectivity of acrylates towards primary amino-PDMS. Polymer Chemistry, 2017, 8, 624-630.	3.9	23
18	Modular construction of single-component polymer nanocapsules through a one-step surfactant-free microemulsion templated synthesis. Chemical Communications, 2017, 53, 1401-1404.	4.1	27

#	Article	IF	CITATIONS
19	Influence of the microstructure of gums on the mechanical properties of silicone high consistency rubbers. Polymer International, 2016, 65, 713-720.	3.1	5
20	Brilliant glyconanocapsules for trapping of bacteria. Chemical Communications, 2015, 51, 13193-13196.	4.1	16
21	Simple but Precise Engineering of Functional Nanocapsules through Nanoprecipitation. Angewandte Chemie - International Edition, 2014, 53, 6910-6913.	13.8	52
22	Nanoprecipitation of Polymethylmethacrylate by Solvent Shifting:1. Boundaries. Langmuir, 2009, 25, 1970-1979.	3.5	224
23	Nanoparticles and Nanocapsules Created Using the Ouzo Effect: Spontaneous Emulsification as an Alternative to Ultrasonic and High-Shear Devices. ChemPhysChem, 2005, 6, 209-216.	2.1	358