
Chun-Yi Zhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/845317/publications.pdf Version: 2024-02-01

Сним-Уг7нг

#	Article	IF	CITATIONS
1	Boron Nitride Nanotubes and Nanosheets. ACS Nano, 2010, 4, 2979-2993.	7.3	1,981
2	Large cale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Advanced Materials, 2009, 21, 2889-2893.	11.1	1,496
3	Boron Nitride Nanotubes. Advanced Materials, 2007, 19, 2413-2432.	11.1	886
4	Nanoporous CaCO ₃ Coatings Enabled Uniform Zn Stripping/Plating for Longâ€Life Zinc Rechargeable Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1801090.	10.2	869
5	Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy, 2019, 62, 550-587.	8.2	817
6	An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy and Environmental Science, 2018, 11, 941-951.	15.6	731
7	"White Graphenes― Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Letters, 2010, 10, 5049-5055.	4.5	723
8	Photoluminescent Ti ₃ C ₂ MXene Quantum Dots for Multicolor Cellular Imaging. Advanced Materials, 2017, 29, 1604847.	11.1	692
9	A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nature Communications, 2015, 6, 10310.	5.8	634
10	Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy, 2016, 22, 422-438.	8.2	629
11	Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Communications, 2013, 4, 2905.	5.8	606
12	Dendrites in Znâ€Based Batteries. Advanced Materials, 2020, 32, e2001854.	11.1	601
13	Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene. Advanced Energy Materials, 2016, 6, 1600969.	10.2	580
14	Singleâ€Crystalline ZnS Nanobelts as Ultravioletâ€Light Sensors. Advanced Materials, 2009, 21, 2034-2039.	11.1	537
15	A Superior δ-MnO ₂ Cathode and a Self-Healing Zn-δ-MnO ₂ Battery. ACS Nano, 2019, 13, 10643-10652.	7.3	535
16	Polyhedral Oligosilsesquioxaneâ€Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Advanced Functional Materials, 2013, 23, 1824-1831.	7.8	529
17	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	18.7	522
18	A flexible rechargeable aqueous zinc manganese-dioxide battery working at â^'20 °C. Energy and Environmental Science, 2019, 12, 706-715.	15.6	511

#	Article	IF	CITATIONS
19	Fabrication and microwave absorption of carbon nanotubesâ^•CoFe2O4 spinel nanocomposite. Applied Physics Letters, 2006, 88, 033105.	1.5	499
20	Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue Inâ€6ervice Batteries. Advanced Materials, 2019, 31, e1903778.	11.1	494
21	Ultrathin MXeneâ€Micropatternâ€Based Fieldâ€Effect Transistor for Probing Neural Activity. Advanced Materials, 2016, 28, 3333-3339.	11.1	474
22	An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 9141-9145.	7.2	458
23	Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Advanced Functional Materials, 2009, 19, 1857-1862.	7.8	457
24	Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy and Environmental Science, 2017, 10, 742-749.	15.6	451
25	Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. ACS Nano, 2018, 12, 3140-3148.	7.3	439
26	Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. Advanced Functional Materials, 2018, 28, 1804560.	7.8	433
27	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	13.8	429
28	Multifunctional Energy Storage and Conversion Devices. Advanced Materials, 2016, 28, 8344-8364.	11.1	420
29	Initiating a mild aqueous electrolyte Co ₃ O ₄ /Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(<scp>iii</scp>) rich-electrode. Energy and Environmental Science, 2018, 11, 2521-2530.	15.6	414
30	From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles. ACS Nano, 2015, 9, 4766-4775.	7.3	411
31	Boron nitride nanotubes. Materials Science and Engineering Reports, 2010, 70, 92-111.	14.8	400
32	Toward Practical Highâ€Areal apacity Aqueous Zincâ€Metal Batteries: Quantifying Hydrogen Evolution and a Solidâ€Ion Conductor for Stable Zinc Anodes. Advanced Materials, 2021, 33, e2007406.	11.1	382
33	Hydrogenâ€Free and Dendriteâ€Free Allâ€Solidâ€State Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1908	1211.1	381
34	Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. ACS Nano, 2017, 11, 3841-3850.	7.3	370
35	Recent Progress on Flexible and Wearable Supercapacitors. Small, 2017, 13, 1701827.	5.2	365
36	Activating C oordinated Iron of Iron Hexacyanoferrate for Zn Hybridâ€lon Batteries with 10 000 ycle Lifespan and Superior Rate Capability. Advanced Materials, 2019, 31, e1901521.	11.1	363

#	Article	IF	CITATIONS
37	Low-dimensional boron nitride nanomaterials. Materials Today, 2012, 15, 256-265.	8.3	343
38	Achieving Highâ€Voltage and Highâ€Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Twoâ€Species Redox Reaction. Advanced Energy Materials, 2019, 9, 1902446.	10.2	341
39	Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc–Air Battery. ACS Nano, 2018, 12, 1949-1958.	7.3	336
40	Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability. ACS Nano, 2017, 11, 8953-8961.	7.3	310
41	High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy, 2016, 27, 230-237.	8.2	297
42	Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. ACS Nano, 2015, 9, 6242-6251.	7.3	291
43	Superâ€Stretchable Zinc–Air Batteries Based on an Alkalineâ€Tolerant Dualâ€Network Hydrogel Electrolyte. Advanced Energy Materials, 2019, 9, 1803046.	10.2	287
44	Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Znâ€MnO ₂ Batteries with Superior Rate Capabilities. Advanced Energy Materials, 2020, 10, 2000035.	10.2	287
45	Achieving Both High Voltage and High Capacity in Aqueous Zincâ€Ion Battery for Record High Energy Density. Advanced Functional Materials, 2019, 29, 1906142.	7.8	285
46	Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9443-9464.	5.2	278
47	Boron Nitride Porous Microbelts for Hydrogen Storage. ACS Nano, 2013, 7, 1558-1565.	7.3	277
48	Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Communications, 2005, 135, 67-70.	0.9	275
49	Boron Nitride Nanosheet Coatings with Controllable Water Repellency. ACS Nano, 2011, 5, 6507-6515.	7.3	275
50	Evaluating Flexibility and Wearability of Flexible Energy Storage Devices. Joule, 2019, 3, 613-619.	11.7	273
51	Hydrogenâ€5ubstituted Graphdiyne Ion Tunnels Directing Concentration Redistribution for Commercialâ€Grade Dendriteâ€Free Zinc Anodes. Advanced Materials, 2020, 32, e2001755.	11.1	261
52	Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide. ACS Nano, 2018, 12, 8597-8605.	7.3	257
53	A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. Journal of Materials Chemistry A, 2019, 7, 7784-7790.	5.2	254
54	Solid‣tate Rechargeable Zn//NiCo and Zn–Air Batteries with Ultralong Lifetime and High Capacity: The Role of a Sodium Polyacrylate Hydrogel Electrolyte. Advanced Energy Materials, 2018, 8, 1802288.	10.2	253

#	Article	IF	CITATIONS
55	Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Applied Materials & Interfaces, 2016, 8, 24837-24843.	4.0	251
56	Non-metallic charge carriers for aqueous batteries. Nature Reviews Materials, 2021, 6, 109-123.	23.3	250
57	Transcriptome analysis and molecular signature of human retinal pigment epithelium. Human Molecular Genetics, 2010, 19, 2468-2486.	1.4	249
58	Perfectly Dissolved Boron Nitride Nanotubes Due to Polymer Wrapping. Journal of the American Chemical Society, 2005, 127, 15996-15997.	6.6	248
59	Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy, 2015, 11, 518-525.	8.2	248
60	Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6490-6496.	2.5	247
61	Ultrafine ZnS Nanobelts as Field Emitters. Advanced Materials, 2007, 19, 2593-2596.	11.1	236
62	Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy, 2014, 8, 133-140.	8.2	232
63	Towards wearable electronic devices: A quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy, 2018, 44, 164-173.	8.2	228
64	Boron nitride nanotubes: functionalization and composites. Journal of Materials Chemistry, 2008, 18, 3900.	6.7	226
65	Mn ₃ O ₄ nanoparticles on layer-structured Ti ₃ C ₂ MXene towards the oxygen reduction reaction and zinc–air batteries. Journal of Materials Chemistry A, 2017, 5, 20818-20823.	5.2	226
66	A Wholly Degradable, Rechargeable Zn–Ti ₃ C ₂ MXene Capacitor with Superior Anti-Self-Discharge Function. ACS Nano, 2019, 13, 8275-8283.	7.3	224
67	ZnO Hollow Spheres with Doubleâ€Yolk Egg Structure for Highâ€Performance Photocatalysts and Photodetectors. Advanced Materials, 2012, 24, 3421-3425.	11.1	223
68	"Chemical Blowing―of Thinâ€Walled Bubbles: Highâ€Throughput Fabrication of Largeâ€Area, Fewâ€Layered and C <i>_x</i> â€BN Nanosheets. Advanced Materials, 2011, 23, 4072-4076.	BN 11.1	217
69	Insight on Organic Molecules in Aqueous Znâ€ion Batteries with an Emphasis on the Zn Anode Regulation. Advanced Energy Materials, 2022, 12, .	10.2	208
70	An Overview of Fiberâ€6haped Batteries with a Focus on Multifunctionality, Scalability, and Technical Difficulties. Advanced Materials, 2020, 32, e1902151.	11.1	207
71	Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Applied Physics Letters, 2002, 81, 1690-1692.	1.5	206
72	Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO ₂ nanoarrays for ammonia production and energy supply with zinc–nitrate batteries. Energy and Environmental Science, 2021, 14, 3938-3944.	15.6	204

#	Article	IF	CITATIONS
73	Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles. Advanced Functional Materials, 2008, 18, 3653-3661.	7.8	196
74	Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes. Nano Letters, 2007, 7, 2146-2151.	4.5	192
75	"Soft Shorts―Hidden in Zinc Metal Anode Research. Joule, 2022, 6, 273-279.	11.7	192
76	A Nanofibrillated Cellulose/Polyacrylamide Electrolyteâ€Based Flexible and Sewable Highâ€Performance Zn–MnO ₂ Battery with Superior Shear Resistance. Small, 2018, 14, e1803978.	5.2	191
77	Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. Journal of Physical Chemistry C, 2010, 114, 4340-4344.	1.5	188
78	Thermal conductivity of graphene-based polymer nanocomposites. Materials Science and Engineering Reports, 2020, 142, 100577.	14.8	188
79	A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy, 2019, 58, 732-742.	8.2	187
80	Initiating Hexagonal MoO ₃ for Superb‣table and Fast NH ₄ ⁺ Storage Based on Hydrogen Bond Chemistry. Advanced Materials, 2020, 32, e1907802.	11.1	186
81	Immobilization of Proteins on Boron Nitride Nanotubes. Journal of the American Chemical Society, 2005, 127, 17144-17145.	6.6	185
82	<i>In Vitro</i> Investigation of the Cellular Toxicity of Boron Nitride Nanotubes. ACS Nano, 2011, 5, 3800-3810.	7.3	184
83	Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes. Nano Letters, 2007, 7, 632-637.	4.5	183
84	Halogenated Ti ₃ C ₂ MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 2021, 15, 1077-1085.	7.3	183
85	Proton-Insertion-Enhanced Pseudocapacitance Based on the Assembly Structure of Tungsten Oxide. ACS Applied Materials & Interfaces, 2014, 6, 18901-18910.	4.0	182
86	A Highly Elastic and Reversibly Stretchable Allâ€Polymer Supercapacitor. Angewandte Chemie - International Edition, 2019, 58, 15707-15711.	7.2	181
87	Phase Transition Induced Unusual Electrochemical Performance of V ₂ CT _X MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551.	7.3	179
88	Covalent Functionalization: Towards Soluble Multiwalled Boron Nitride Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 7932-7935.	7.2	171
89	Phonon characteristics and cathodolumininescence of boron nitride nanotubes. Applied Physics Letters, 2005, 86, 213110.	1.5	171
90	An Intrinsically Selfâ€Healing NiCo Zn Rechargeable Battery with a Selfâ€Healable Ferricâ€Ionâ€Crosslinking Sodium Polyacrylate Hydrogel Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 9810-9813.	7.2	171

Сним-Yi Zhi

#	Article	IF	CITATIONS
91	Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. Journal of Materials Chemistry A, 2013, 1, 1952.	5.2	168
92	Chemically Activated Boron Nitride Nanotubes. Chemistry - an Asian Journal, 2009, 4, 1536-1540.	1.7	167
93	Recent Advances in Electrolytes for "Beyond Aqueous―Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2106409.	11.1	167
94	Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon, 2018, 130, 532-543.	5.4	164
95	Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy, 2013, 2, 754-763.	8.2	161
96	A Highly Durable, Transferable, and Substrateâ€Versatile Highâ€Performance Allâ€Polymer Microâ€Supercapacitor with Plugâ€andâ€Play Function. Advanced Materials, 2017, 29, 1605137.	11.1	160
97	A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Materials, 2019, 23, 636-645.	9.5	159
98	Cobalt(ii,iii) oxide hollow structures: fabrication, properties and applications. Journal of Materials Chemistry, 2012, 22, 23310.	6.7	156
99	Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polymer Chemistry, 2012, 3, 962.	1.9	155
100	Toward Effective Synergetic Effects from Graphene Nanoplatelets and Carbon Nanotubes on Thermal Conductivity of Ultrahigh Volume Fraction Nanocarbon Epoxy Composites. Journal of Physical Chemistry C, 2012, 116, 23812-23820.	1.5	154
101	Polymer composites of boron nitride nanotubes and nanosheets. Journal of Materials Chemistry C, 2014, 2, 10049-10061.	2.7	153
102	Binder-free hierarchical VS ₂ electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. Journal of Materials Chemistry A, 2019, 7, 16330-16338.	5.2	152
103	Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy and Environmental Science, 2021, 14, 3492-3501.	15.6	152
104	A Universal Principle to Design Reversible Aqueous Batteries Based on Deposition–Dissolution Mechanism. Advanced Energy Materials, 2019, 9, 1901838.	10.2	151
105	Core–satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Physical Chemistry Chemical Physics, 2013, 15, 17560.	1.3	150
106	Phosphorene as Cathode Material for Highâ€Voltage, Antiâ€Selfâ€Discharge Zinc Ion Hybrid Capacitors. Advanced Energy Materials, 2020, 10, 2001024.	10.2	149
107	Characteristics of Boron Nitride Nanotube-Polyaniline Composites. Angewandte Chemie - International Edition, 2005, 44, 7929-7932.	7.2	147
108	Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering Reports, 2020, 139, 100520.	14.8	145

#	Article	IF	CITATIONS
109	Component Matters: Paving the Roadmap toward Enhanced Electrocatalytic Performance of Graphitic C ₃ N ₄ -Based Catalysts <i>via</i> Atomic Tuning. ACS Nano, 2017, 11, 6004-6014.	7.3	144
110	Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Research Letters, 2012, 7, 662.	3.1	143
111	Boron nitride nanotubes/polystyrene composites. Journal of Materials Research, 2006, 21, 2794-2800.	1.2	142
112	Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy and Environmental Science, 2022, 15, 1086-1096.	15.6	141
113	One-dimensional surface phonon polaritons in boron nitride nanotubes. Nature Communications, 2014, 5, 4782.	5.8	140
114	The S-functionalized Ti ₃ C ₂ Mxene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale, 2018, 10, 3385-3392.	2.8	139
115	A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. Journal of Materials Chemistry A, 2018, 6, 8549-8557.	5.2	138
116	Aqueous Noncovalent Functionalization and Controlled Near-Surface Carbon Doping of Multiwalled Boron Nitride Nanotubes. Journal of the American Chemical Society, 2008, 130, 8144-8145.	6.6	137
117	Highly Efficient Electrochemical Reduction of Nitrogen to Ammonia on Surface Termination Modified Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Nano, 2020, 14, 9089-9097.	7.3	137
118	Toward a Practical Zn Powder Anode: Ti ₃ C ₂ T <i>x</i> MXene as a Lattice-Match Electrons/Ions Redistributor. ACS Nano, 2021, 15, 14631-14642.	7.3	137
119	A Flexible Solidâ€State Aqueous Zinc Hybrid Battery with Flat and Highâ€Voltage Discharge Plateau. Advanced Energy Materials, 2019, 9, 1902473.	10.2	136
120	Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. Journal of Colloid and Interface Science, 2011, 359, 261-268.	5.0	135
121	Recent Progress of <scp>MX</scp> eneâ€Based Nanomaterials in Flexible Energy Storage and Electronic Devices. Energy and Environmental Materials, 2018, 1, 183-195.	7.3	135
122	Dendrites issues and advances in Zn anode for aqueous rechargeable Znâ€based batteries. EcoMat, 2020, 2, e12035.	6.8	135
123	Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology, 2009, 20, 385707.	1.3	134
124	A shape memory supercapacitor and its application in smart energy storage textiles. Journal of Materials Chemistry A, 2016, 4, 1290-1297.	5.2	134
125	A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Science Bulletin, 2018, 63, 1077-1086.	4.3	134
126	Capacitance Enhancement in a Semiconductor Nanostructureâ€Based Supercapacitor by Solar Light and a Selfâ€Powered Supercapacitor–Photodetector System. Advanced Functional Materials, 2016, 26, 4481-4490.	7.8	133

#	Article	IF	CITATIONS
127	Building durable aqueous K-ion capacitors based on MXene family. , 2022, 1, e9120002.		131
128	CoO octahedral nanocages for high-performance lithium ion batteries. Chemical Communications, 2012, 48, 4878.	2.2	130
129	Activating the I ⁰ /I ⁺ redox couple in an aqueous I ₂ –Zn battery to achieve a high voltage plateau. Energy and Environmental Science, 2021, 14, 407-413.	15.6	129
130	Highly Thermo-conductive Fluid with Boron Nitride Nanofillers. ACS Nano, 2011, 5, 6571-6577.	7.3	128
131	In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. Advanced Energy Materials, 2020, 10, 2001791.	10.2	128
132	Vertically Aligned Sn ⁴⁺ Preintercalated Ti ₂ CT _X MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan. Advanced Energy Materials, 2020, 10, 2001394.	10.2	127
133	An electrochromic supercapacitor and its hybrid derivatives: quantifiably determining their electrical energy storage by an optical measurement. Journal of Materials Chemistry A, 2015, 3, 21321-21327.	5.2	124
134	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
135	Advances in Flexible and Wearable Energy‣torage Textiles. Small Methods, 2018, 2, 1800124.	4.6	123
136	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie - International Edition, 2021, 60, 1011-1021.	7.2	122
137	Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure. Advanced Energy Materials, 2021, 11, 2003931.	10.2	122
138	Enhanced Redox Kinetics and Duration of Aqueous I ₂ /I ^{â^'} Conversion Chemistry by MXene Confinement. Advanced Materials, 2021, 33, e2006897.	11.1	121
139	A high performance fiber-shaped PEDOT@MnO ₂ //C@Fe ₃ O ₄ asymmetric supercapacitor for wearable electronics. Journal of Materials Chemistry A, 2016, 4, 14877-14883.	5.2	118
140	3D Graphene Fibers Grown by Thermal Chemical Vapor Deposition. Advanced Materials, 2018, 30, e1705380.	11.1	116
141	Multiâ€Functional Hydrogels for Flexible Zincâ€Based Batteries Working under Extreme Conditions. Advanced Energy Materials, 2021, 11, 2101749.	10.2	116
142	Thermal Conductivity Improvement of Polymer Films by Catechin-Modified Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2009, 113, 13605-13609.	1.5	115
143	Enabling highly efficient, flexible and rechargeable quasi-solid-state zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Materials, 2019, 20, 234-242.	9.5	115
144	Layered Rare-Earth Hydroxides (LRHs) of (Y _{1â^²<i>x</i>} Eu _{<i>x</i>}) ₂ (OH) ₅ NO ₃ · <i>n<!--</td--><td>i>H₂</td><td>20</td></i>	i>H ₂	20

Сним-Yi Zhi

#	Article	IF	CITATIONS
145	Stabilized Co ³⁺ /Co ⁴⁺ Redox Pair in In Situ Produced CoSe _{2â^'} <i>_x</i> â€Derived Cobalt Oxides for Alkaline Zn Batteries with 10 000â€Cycle Lifespan and 1.9â€V Voltage Plateau. Advanced Energy Materials, 2020, 10, 2000892.	10.2	114
146	Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density. Nano Energy, 2014, 4, 39-48.	8.2	112
147	Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. Journal of Materials Chemistry A, 2016, 4, 12205-12211.	5.2	112
148	Construction of a hierarchical 3D Co/N-carbon electrocatalyst for efficient oxygen reduction and overall water splitting. Journal of Materials Chemistry A, 2018, 6, 489-497.	5.2	111
149	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc″odine Battery with Improved Power and Energy Densities. Angewandte Chemie - International Edition, 2021, 60, 3791-3798.	7.2	111
150	Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co ₃ O ₄ @polypyrrole core–shell nanorod bundle array electrodes. Journal of Materials Chemistry A, 2018, 6, 19058-19065.	5.2	110
151	Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy, 2018, 50, 623-631.	8.2	110
152	Efficient Ammonia Electrosynthesis and Energy Conversion through a Znâ€Nitrate Battery by Iron Doping Engineered Nickel Phosphide Catalyst. Advanced Energy Materials, 2022, 12, .	10.2	108
153	3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. Nano Energy, 2016, 27, 439-446.	8.2	107
154	Highly Flexible and Self-Healable Thermal Interface Material Based on Boron Nitride Nanosheets and a Dual Cross-Linked Hydrogel. ACS Applied Materials & Interfaces, 2017, 9, 10078-10084.	4.0	107
155	Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nature Communications, 2021, 12, 2400.	5.8	107
156	Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28, 264-292.	9.5	106
157	Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn–MnO ₂ Battery and a Flexible Battery–Sensor System. ACS Applied Materials & Interfaces, 2018, 10, 44527-44534.	4.0	105
158	Aqueous Zinc–Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. Advanced Materials, 2020, 32, e2001469.	11,1	104
159	Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nature Communications, 2021, 12, 3106.	5.8	104
160	Boron–oxygen luminescence centres in boron–nitrogen systems. Chemical Communications, 2007, , 4599.	2.2	102
161	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 23836-23844.	7.2	102
162	Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nature Communications, 2022, 13, .	5.8	101

Сним-Yi Zhi

#	Article	IF	CITATIONS
163	Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 2435-2440.	4.0	99
164	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56, 9571-9576.	7.2	98
165	Adjustable boron carbonitride nanotubes. Journal of Applied Physics, 2002, 91, 5325-5333.	1.1	97
166	Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Nanotechnology, 2011, 22, 145602.	1.3	97
167	Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy and Environmental Science, 2018, 11, 2414-2422.	15.6	97
168	Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn–air battery. NPG Asia Materials, 2018, 10, 670-684.	3.8	97
169	Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology, 2007, 18, 485706.	1.3	96
170	Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology, 2012, 23, 455705.	1.3	96
171	Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 13552-13561.	4.0	95
172	Biomimetic organohydrogel electrolytes for highâ€environmental adaptive energy storage devices. EcoMat, 2019, 1, e12008.	6.8	95
173	A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	95
174	Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy and Environmental Science, 2021, 14, 2441-2450.	15.6	93
175	Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization. Physical Review B, 2006, 74, .	1.1	92
176	In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse. Journal of Materials Chemistry, 2012, 22, 17984.	6.7	92
177	Unusual formation of α-Fe2O3 hexagonal nanoplatelets in N-doped sandwiched graphene chamber for high-performance lithium-ions batteries. Nano Energy, 2013, 2, 257-267.	8.2	92
178	Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid zn batteries. Energy Storage Materials, 2021, 36, 427-434.	9.5	92
179	Raman characterization of boron carbonitride nanotubes. Applied Physics Letters, 2002, 80, 3590-3592.	1.5	90
180	The rise of aqueous rechargeable batteries with organic electrode materials. Journal of Materials Chemistry A, 2020, 8, 15479-15512.	5.2	90

#	Article	IF	CITATIONS
181	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti ₃ C ₂ MXenes. ACS Nano, 2022, 16, 813-822.	7.3	90
182	Aqueous Rechargeable Metalâ€Ion Batteries Working at Subzero Temperatures. Advanced Science, 2021, 8, 2002590.	5.6	89
183	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
184	Noncovalent Functionalization of Disentangled Boron Nitride Nanotubes with Flavin Mononucleotides for Strong and Stable Visible-Light Emission in Aqueous Solution. ACS Applied Materials & Interfaces, 2011, 3, 627-632.	4.0	88
185	A comprehensive analysis of the CVD growth of boron nitride nanotubes. Nanotechnology, 2012, 23, 215601.	1.3	88
186	Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte. RSC Advances, 2019, 9, 16313-16319.	1.7	88
187	Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Film― Advanced Materials, 2020, 32, e2003070.	11.1	88
188	Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions. Nano Energy, 2021, 81, 105632.	8.2	88
189	Carbonâ€5upported Nickel Selenide Hollow Nanowires as Advanced Anode Materials for Sodiumâ€lon Batteries. Small, 2018, 14, 1702669.	5.2	87
190	Isolation of Individual Boron Nitride Nanotubes via Peptide Wrapping. Journal of the American Chemical Society, 2010, 132, 4976-4977.	6.6	86
191	Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Materials, 2020, 28, 55-63.	9.5	85
192	Purification of Boron Nitride Nanotubes through Polymer Wrapping. Journal of Physical Chemistry B, 2006, 110, 1525-1528.	1.2	84
193	A Highly Stable and Durable Capacitive Strain Sensor Based on Dynamically Superâ€Tough Hydro/Organoâ€Gels. Advanced Functional Materials, 2021, 31, 2010830.	7.8	84
194	Isotope Effect on Band Gap and Radiative Transitions Properties of Boron Nitride Nanotubes. Nano Letters, 2008, 8, 491-494.	4.5	83
195	Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by <i>in situ</i> reversible addition fragmentation chain transfer polymerization. Nanotechnology, 2015, 26, 015705.	1.3	83
196	Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale, 2019, 11, 17992-18008.	2.8	83
197	Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chemical Communications, 2013, 49, 7337.	2.2	82
198	Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. Journal of Energy Chemistry, 2022, 69, 194-204.	7.1	82

#	Article	IF	CITATIONS
199	Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. Journal of Materials Chemistry, 2012, 22, 4818.	6.7	81
200	Boron Element Nanowires Electrode for Supercapacitors. Advanced Energy Materials, 2018, 8, 1703117.	10.2	81
201	Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Performance Zinc-Ion Batteries. ACS Nano, 2019, 13, 7270-7280.	7.3	81
202	Uniform Virusâ€Like Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiberâ€Shaped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945.	7.8	81
203	Recent progress of fiber-shaped asymmetric supercapacitors. Materials Today Energy, 2017, 5, 1-14.	2.5	80
204	A Usage Scenario Independent "Air Chargeable―Flexible Zinc Ion Energy Storage Device. Advanced Energy Materials, 2019, 9, 1900509.	10.2	80
205	Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries. Materials Today Energy, 2020, 17, 100431.	2.5	80
206	Near-band-edge recombinations in multiwalled boron nitride nanotubes: Cathodoluminescence and photoluminescence spectroscopy measurements. Physical Review B, 2008, 77, .	1.1	78
207	Highly Integrated Supercapacitorâ€Sensor Systems via Material and Geometry Design. Small, 2016, 12, 3393-3399.	5.2	78
208	Integrating a Triboelectric Nanogenerator and a Zincâ€lon Battery on a Designed Flexible 3D Spacer Fabric. Small Methods, 2018, 2, 1800150.	4.6	78
209	Confining Aqueous Zn–Br Halide Redox Chemistry by Ti ₃ C ₂ T _X MXene. ACS Nano, 2021, 15, 1718-1726.	7.3	78
210	Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnO x /TiO 2 nanotube composite electrodes. Nano Energy, 2016, 20, 254-263.	8.2	77
211	Commencing an Acidic Battery Based on a Copper Anode with Ultrafast Protonâ€Regulated Kinetics and Superior Dendriteâ€Free Property. Advanced Materials, 2019, 31, e1905873.	11.1	77
212	Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope. Acta Materialia, 2007, 55, 1293-1298.	3.8	76
213	A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy, 2020, 71, 104583.	8.2	75
214	DNAâ€Mediated Assembly of Boron Nitride Nanotubes. Chemistry - an Asian Journal, 2007, 2, 1581-1585.	1.7	74
215	Fabrication of Boron Nitride Nanosheets by Exfoliation. Chemical Record, 2016, 16, 1204-1215.	2.9	74
216	Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule, 2021, 5, 2993-3005.	11.7	74

#	Article	IF	CITATIONS
217	Light-weight 3D Co–N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc–air batteries. Nanoscale, 2018, 10, 10412-10419.	2.8	73
218	Molecular Crowding Effect in Aqueous Electrolytes to Suppress Hydrogen Reduction Reaction and Enhance Electrochemical Nitrogen Reduction. Advanced Energy Materials, 2021, 11, 2101699.	10.2	73
219	Nanometer-thin layered hydroxide platelets of (Y0.95Eu0.05)2(OH)5NO3·xH2O: exfoliation-free synthesis, self-assembly, and the derivation of dense oriented oxide films of high transparency and greatly enhanced luminescence. Journal of Materials Chemistry, 2011, 21, 6903.	6.7	72
220	Ultrahigh Torsional Stiffness and Strength of Boron Nitride Nanotubes. Nano Letters, 2012, 12, 6347-6352.	4.5	72
221	Self-healable electroluminescent devices. Light: Science and Applications, 2018, 7, 102.	7.7	71
222	A Selfâ€Healing Creaseâ€Free Supramolecular Allâ€Polymer Supercapacitor. Advanced Science, 2021, 8, 2100072.	5.6	70
223	Mechanical and Thermal Properties of Polymethyl Methacrylate-BN Nanotube Composites. Journal of Nanomaterials, 2008, 2008, 1-5.	1.5	68
224	Commencing mild Ag–Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Materials, 2020, 25, 86-92.	9.5	68
225	Carbon Nanotubes as Nanoreactors for Fabrication of Single-Crystalline Mg3N2Nanowires. Nano Letters, 2006, 6, 1136-1140.	4.5	67
226	Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery. Materials Today Energy, 2019, 14, 100361.	2.5	67
227	Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Advances, 2016, 6, 79090-79094.	1.7	66
228	3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications. Energy Storage Materials, 2021, 39, 146-165.	9.5	66
229	Enhanced Tolerance to Stretch-Induced Performance Degradation of Stretchable MnO ₂ -Based Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 2569-2574.	4.0	65
230	Environmental Stability of MXenes as Energy Storage Materials. Frontiers in Materials, 2019, 6, .	1.2	65
231	Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. CheM, 2022, 8, 2204-2216.	5.8	65
232	A Zn–nitrite battery as an energy-output electrocatalytic system for high-efficiency ammonia synthesis using carbon-doped cobalt oxide nanotubes. Energy and Environmental Science, 2022, 15, 3024-3032.	15.6	65
233	Facile synthesis of î±-Fe ₂ O ₃ nanodisk with superior photocatalytic performance and mechanism insight. Science and Technology of Advanced Materials, 2015, 16, 014801.	2.8	63
234	Dispersible Shortened Boron Nitride Nanotubes with Improved Molecule‣oading Capacity. Chemistry - an Asian Journal, 2011, 6, 2530-2535.	1.7	62

#	Article	IF	CITATIONS
235	High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Composites Science and Technology, 2016, 130, 63-69.	3.8	61
236	Stretchable Energy Storage Devices: From Materials and Structural Design to Device Assembly. Advanced Energy Materials, 2021, 11, 2003308.	10.2	61
237	<i>In situ</i> formation of NaTi ₂ (PO ₄) ₃ cubes on Ti ₃ C ₂ MXene for dual-mode sodium storage. Journal of Materials Chemistry A, 2018, 6, 18525-18532.	5.2	60
238	Vapor-Infiltration Approach toward Selenium/Reduced Graphene Oxide Composites Enabling Stable and High-Capacity Sodium Storage. ACS Nano, 2018, 12, 7397-7405.	7.3	60
239	Highâ€Voltage Organic Cathodes for Zincâ€Ion Batteries through Electron Cloud and Solvation Structure Regulation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	60
240	Cations Coordinationâ€Regulated Reversibility Enhancement for Aqueous Znâ€Ion Battery. Advanced Functional Materials, 2021, 31, 2105736.	7.8	59
241	An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. Angewandte Chemie, 2017, 129, 9269-9273.	1.6	58
242	Smallâ€Dipoleâ€Moleculeâ€Containing Electrolytes for Highâ€Voltage Aqueous Rechargeable Batteries. Advanced Materials, 2022, 34, e2106180.	11.1	58
243	Zn electrode/electrolyte interfaces of Zn batteries: A mini review. Electrochemistry Communications, 2021, 122, 106898.	2.3	57
244	Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling. Chemical Communications, 2015, 51, 7104-7107.	2.2	55
245	Ni ₃ S ₂ /Ni nanosheet arrays for high-performance flexible zinc hybrid batteries with evident two-stage charge and discharge processes. Journal of Materials Chemistry A, 2019, 7, 18915-18924.	5.2	55
246	Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites. Journal of Physics: Conference Series, 2013, 471, 012003.	0.3	54
247	Recent Advances in Electrode Fabrication for Flexible Energyâ€Storage Devices. Advanced Materials Technologies, 2019, 4, 1900083.	3.0	54
248	Boosting the Cycling Stability of Aqueous Flexible Zn Batteries via F Doping in Nickel–Cobalt Carbonate Hydroxide Cathode. Small, 2020, 16, e2001935.	5.2	54
249	A manganese hexacyanoferrate framework with enlarged ion tunnels and twoâ€species redox reaction for aqueous Al-ion batteries. Nano Energy, 2021, 84, 105945.	8.2	54
250	Ether–Water Hybrid Electrolyte Contributing to Excellent Mg Ion Storage in Layered Sodium Vanadate. ACS Nano, 2022, 16, 6093-6102.	7.3	54
251	Organic materialsâ€based cathode for zinc ion battery. SmartMat, 2022, 3, 565-581.	6.4	54
252	A rechargeable Al–N ₂ battery for energy storage and highly efficient N ₂ fixation. Energy and Environmental Science, 2020, 13, 2888-2895.	15.6	53

#	Article	IF	CITATIONS
253	Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug. International Journal of Nanomedicine, 2016, Volume 11, 4573-4582.	3.3	52
254	Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4â [~] to Al3+ and an electrochromic Al ion battery. Energy Storage Materials, 2021, 39, 412-418.	9.5	52
255	Morphology-Controlled Synthesis of ZnO Nanostructures by a Simple Round-to-Round Metal Vapor Deposition Route. Journal of Physical Chemistry B, 2006, 110, 3973-3978.	1.2	51
256	Theoretical prediction of MXene-like structured Ti ₃ C ₄ as a high capacity electrode material for Na ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 29106-29113.	1.3	51
257	A modularization approach for linear-shaped functional supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4580-4586.	5.2	50
258	Dendrite Issues for Zinc Anodes in a Flexible Cell Configuration for Zincâ€Based Wearable Energyâ€Storage Devices. Angewandte Chemie - International Edition, 2022, 61, .	7.2	50
259	Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride. Chemical Physics Letters, 2006, 421, 86-90.	1.2	49
260	Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides. Nanoscale, 2012, 4, 6343.	2.8	49
261	High-performance Transparent and Flexible Asymmetric Supercapacitor based on Graphene-wrapped Amorphous FeOOH Nanowire and Co(OH) 2 Nanosheet Transparent Films Produced at air-water interface. Electrochimica Acta, 2016, 220, 618-627.	2.6	49
262	Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: achieving multiple deformabilities. Energy and Environmental Science, 2021, 14, 3599-3608.	15.6	49
263	Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nature Communications, 2022, 13, 752.	5.8	49
264	Conversionâ€Type Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries. Advanced Materials, 2021, 33, e2105426.	11.1	48
265	Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Applied Physics A: Materials Science and Processing, 2007, 88, 347-352.	1.1	47
266	Improved TiO ₂ Photocatalytic Reduction by the Intrinsic Electrostatic Potential of BN Nanotubes. Chemistry - an Asian Journal, 2010, 5, 1220-1224.	1.7	47
267	Stretchable and Thermally Stable Dual Emission Composite Films of On-Purpose Aggregated Copper Nanoclusters in Carboxylated Polyurethane for Remote White Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 33993-33998.	4.0	47
268	Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. Nanoscale Research Letters, 2013, 8, 3.	3.1	46
269	Metalâ€Tellurium Batteries: A Rising Energy Storage System. Small Structures, 2020, 1, 2000005.	6.9	46
270	Sulfonated Graphene Aerogels Enable Safeâ€toâ€Use Flexible Perovskite Solar Modules. Advanced Energy Materials, 2022, 12, .	10.2	46

Chun-Yi Zhi

#	Article	IF	CITATIONS
271	SnO2Nanoparticle-Functionalized Boron Nitride Nanotubes. Journal of Physical Chemistry B, 2006, 110, 8548-8550.	1.2	45
272	Grafting Boron Nitride Nanotubes:  From Polymers to Amorphous and Graphitic Carbon. Journal of Physical Chemistry C, 2007, 111, 1230-1233.	1.5	45
273	Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology, 2009, 20, 085705.	1.3	45
274	Liquidâ€Free Allâ€Solidâ€State Zinc Batteries and Encapsulationâ€Free Flexible Batteries Enabled by Inâ€Situ Constructed Polymer Electrolyte. Angewandte Chemie, 2020, 132, 24044-24052.	1.6	45
275	BNnanotubes coated with uniformly distributed Fe ₃ O ₄ nanoparticles: novel magneto-operable nanocomposites. Journal of Materials Chemistry, 2010, 20, 1007-1011.	6.7	44
276	Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. Acta Materialia, 2012, 60, 6213-6222.	3.8	44
277	Noncovalent Functionalization of Boron Nitride Nanotubes in Aqueous Media Opens Application Roads in Nanobiomedicine. Nanobiomedicine, 2014, 1, 7.	4.4	44
278	Temperature-Dependent Lipid Extraction from Membranes by Boron Nitride Nanosheets. ACS Nano, 2018, 12, 2764-2772.	7.3	44
279	Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries. Matter, 2021, 4, 3146-3160.	5.0	44
280	Electrochemical Nitrate Production <i>via</i> Nitrogen Oxidation with Atomically Dispersed Fe on N-Doped Carbon Nanosheets. ACS Nano, 2022, 16, 655-663.	7.3	44
281	Boron carbonitride nanojunctions. Applied Physics Letters, 2002, 80, 124-126.	1.5	43
282	Nanomaterial Engineering and Property Studies in a Transmission Electron Microscope. Advanced Materials, 2012, 24, 177-194.	11.1	43
283	Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Advances, 2015, 5, 33981-33989.	1.7	43
284	pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. International Journal of Nanomedicine, 2018, Volume 13, 641-652.	3.3	43
285	Large-scale fabrication of boron nitride nanohorn. Applied Physics Letters, 2005, 87, 063107.	1.5	42
286	Toward Enhancing Wearability and Fashion of Wearable Supercapacitor with Modified Polyurethane Artificial Leather Electrolyte. Nano-Micro Letters, 2018, 10, 38.	14.4	42
287	A Highly Elastic and Reversibly Stretchable Allâ€Polymer Supercapacitor. Angewandte Chemie, 2019, 131, 15854-15858.	1.6	42
288	Flexible Dual-Mode Tactile Sensor Derived from Three-Dimensional Porous Carbon Architecture. ACS Applied Materials & Interfaces, 2017, 9, 22685-22693.	4.0	41

#	Article	IF	CITATIONS
289	Toward Multifunctional and Wearable Smart Skins with Energyâ€Harvesting, Touchâ€Sensing, and Exteroceptionâ€Visualizing Capabilities by an Allâ€Polymer Design. Advanced Electronic Materials, 2019, 5, 1900553.	2.6	41
290	A reversible Zn-metal battery. Nature Nanotechnology, 2021, 16, 854-855.	15.6	41
291	Dielectric and thermal properties of epoxy/boron nitride nanotube composites. Pure and Applied Chemistry, 2010, 82, 2175-2183.	0.9	40
292	High-yield boron nitride nanosheets from â€~chemical blowing': towards practical applications in polymer composites. Journal of Physics Condensed Matter, 2012, 24, 314205.	0.7	40
293	Revealing the Anomalous Tensile Properties of WS ₂ Nanotubes by in Situ Transmission Electron Microscopy. Nano Letters, 2013, 13, 1034-1040.	4.5	40
294	Highly Thermally/Electrochemically Stable I ^{â^'} /I ₃ ^{â^'} Bonded Organic Salts with High I Content for Long‣ife Li–I ₂ Batteries. Advanced Energy Materials, 2022, 12,	10.2	40
295	Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2551-2555.	1.3	39
296	Metal‶uned Acetylene Linkages in Hydrogen Substituted Graphdiyne Boosting the Electrochemical Oxygen Reduction. Small, 2020, 16, e1907341.	5.2	39
297	pH sensor based on boron nitride nanotubes. Nanotechnology, 2009, 20, 415501.	1.3	38
298	Specific heat capacity and density of multi-walled boron nitride nanotubes by chemical vapor deposition. Solid State Communications, 2011, 151, 183-186.	0.9	38
299	Mid-infrared Polaritonic Coupling between Boron Nitride Nanotubes and Graphene. ACS Nano, 2014, 8, 11305-11312.	7.3	38
300	Scalable synthesis of 2D hydrogen-substituted graphdiyne on Zn substrate for high-yield N2 fixation. Nano Energy, 2020, 78, 105283.	8.2	38
301	Latest advances in MXene biosensors. JPhys Materials, 2020, 3, 031001.	1.8	38
302	Molecule Ordering Triggered by Boron Nitride Nanotubes and "Green―Chemical Functionalization of Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2007, 111, 18545-18549.	1.5	37
303	Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. Nanoscale Research Letters, 2014, 9, 643.	3.1	37
304	Facet-Controlling Agents Free Synthesis of Hematite Crystals with High-Index Planes: Excellent Photodegradation Performance and Mechanism Insight. ACS Applied Materials & Interfaces, 2016, 8, 142-151.	4.0	37
305	A Longâ€Life Batteryâ€Type Electrochromic Window with Remarkable Energy Storage Ability. Solar Rrl, 2020, 4, 1900425.	3.1	37
306	Highâ€Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrierâ€Hosting Potential Compensation. Angewandte Chemie - International Edition, 2021, 60, 5443-5452.	7.2	37

#	Article	IF	CITATIONS
307	Single-crystalline cubic structured InP nanosprings. Applied Physics Letters, 2006, 88, 243106.	1.5	36
308	Nanotoxicity of Boron Nitride Nanosheet to Bacterial Membranes. Langmuir, 2019, 35, 6179-6187.	1.6	36
309	Suppressing surface passivation of bimetallic phosphide by sulfur for long-life alkaline aqueous zinc batteries. Energy Storage Materials, 2020, 33, 230-238.	9.5	36
310	High-density uniformly aligned silicon nanotip arrays and their enhanced field emission characteristics. Solid State Communications, 2003, 125, 185-188.	0.9	35
311	Chitosan-coated boron nitride nanospheres enhance delivery of CpG oligodeoxynucleotides and induction of cytokines. International Journal of Nanomedicine, 2013, 8, 1783.	3.3	35
312	Integration designs toward newâ€generation wearable energy supplyâ€sensor systems for realâ€ŧime health monitoring: A minireview. InformaAnÃ-Materiály, 2020, 2, 1109-1130.	8.5	35
313	In-situ grown porous protective layers with high binding strength for stable Zn anodes. Chemical Engineering Journal, 2022, 434, 134688.	6.6	35
314	Chemical Peeling and Branching of Boron Nitride Nanotubes in Dimethyl Sulfoxide. Angewandte Chemie - International Edition, 2006, 45, 2044-2047.	7.2	34
315	BN nanospheres as CpG ODN carriers for activation of toll-like receptor 9. Journal of Materials Chemistry, 2011, 21, 5219.	6.7	34
316	X-ray Excited Optical Luminescence from Hexagonal Boron Nitride Nanotubes: Electronic Structures and the Role of Oxygen Impurities. ACS Nano, 2011, 5, 631-639.	7.3	34
317	Regulating nitrogenous adsorption and desorption on Pd clusters by the acetylene linkages of hydrogen substituted graphdiyne for efficient electrocatalytic ammonia synthesis. Nano Energy, 2021, 86, 106099.	8.2	34
318	Twoâ€Electron Redox Chemistry Enabled Highâ€Performance Iodideâ€Ion Conversion Battery. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
319	Recent advances and future perspectives for aqueous zinc-ion capacitors. Materials Futures, 2022, 1, 022101.	3.1	34
320	Enhancement of thermal conductivity in water-based nanofluids employing TiO2/reduced graphene oxide composites. Journal of Materials Science, 2016, 51, 10104-10115.	1.7	33
321	Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries. Nature Communications, 2022, 13, .	5.8	33
322	In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. Applied Physics Letters, 2006, 88, 123101.	1.5	32
323	Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors. Nanoscale, 2012, 4, 6318.	2.8	32
324	Electrocatalytic lodine Reduction Reaction Enabled by Aqueous Zincâ€lodine Battery with Improved Power and Energy Densities. Angewandte Chemie, 2021, 133, 3835-3842.	1.6	32

Chun-Yi Zhi

#	Article	IF	CITATIONS
325	Cathode Engineering for High Energy Density Aqueous Zn Batteries. Accounts of Materials Research, 2022, 3, 78-88.	5.9	32
326	Efficient disentanglement of boron nitride nanotubes using water-soluble polysaccharides for protein immobilization. RSC Advances, 2012, 2, 6200.	1.7	31
327	A comprehensive investigation on CVD growth thermokinetics of h-BN white graphene. 2D Materials, 2016, 3, 035007.	2.0	31
328	Functional flexible and wearable supercapacitors. Journal Physics D: Applied Physics, 2017, 50, 273001.	1.3	31
329	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.	1.6	31
330	Tunable Freeâ€Standing Ultrathin Porous Nickel Film for High Performance Flexible Nickel–Metal Hydride Batteries. Advanced Energy Materials, 2018, 8, 1702467.	10.2	31
331	A universal method towards conductive textile for flexible batteries with superior softness. Energy Storage Materials, 2021, 36, 272-278.	9.5	31
332	Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
333	Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. International Journal of Nanomedicine, 2015, 10, 5343.	3.3	30
334	A high-performance flexible direct ethanol fuel cell with drop-and-play function. Nano Energy, 2019, 65, 104052.	8.2	30
335	Boron Nitride Nanosheet Dispersion at High Concentrations. ACS Applied Materials & Interfaces, 2021, 13, 44751-44759.	4.0	30
336	Reconstructing Vanadium Oxide with Anisotropic Pathways for a Durable and Fast Aqueous K-Ion Battery. ACS Nano, 2021, 15, 17717-17728.	7.3	30
337	Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. Materials Science and Engineering C, 2019, 96, 552-560.	3.8	29
338	Initiating a wearable solid-state Mg hybrid ion full battery with high voltage, high capacity and ultra-long lifespan in air. Energy Storage Materials, 2020, 31, 451-458.	9.5	29
339	In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts. Cell Reports Physical Science, 2022, 3, 100729.	2.8	29
340	Electrocatalytic Selenium Redox Reaction for Highâ€Mass‣oading Zincâ€6elenium Batteries with Improved Kinetics and Selenium Utilization. Advanced Energy Materials, 2022, 12, .	10.2	29
341	Boron Carbonitride Nanotubes. Journal of Nanoscience and Nanotechnology, 2004, 4, 35-51.	0.9	28
342	Spherical Boron Nitride Supported Gold–Copper Catalysts for the Lowâ€Temperature Selective Oxidation of Ethanol. ChemCatChem, 2017, 9, 1363-1367.	1.8	28

#	Article	IF	CITATIONS
343	A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability. ACS Applied Materials & Interfaces, 2018, 10, 21297-21305.	4.0	28
344	Initiating a Roomâ€Temperature Rechargeable Aqueous Fluorideâ€Ion Battery with Long Lifespan through a Rational Buffering Phase Design. Advanced Energy Materials, 2021, 11, 2003714.	10.2	28
345	Tellurium: A High-Performance Cathode for Magnesium Ion Batteries Based on a Conversion Mechanism. ACS Nano, 2022, 16, 5349-5357.	7.3	28
346	High-Yield Synthesis of Boron Nitride Nanoribbons <i>via</i> Longitudinal Splitting of Boron Nitride Nanotubes by Potassium Vapor. ACS Nano, 2014, 8, 9867-9873.	7.3	27
347	Metal-Iodine and Metal-Bromine Batteries: A Review. Bulletin of the Chemical Society of Japan, 2021, 94, 2036-2042.	2.0	27
348	Highâ€Rate Aqueous Aluminumâ€lon Batteries Enabled by Confined Iodine Conversion Chemistry. Small Methods, 2021, 5, e2100611.	4.6	26
349	Strategies of binder design for high-performance lithium-ion batteries: a mini review. Rare Metals, 2022, 41, 745-761.	3.6	26
350	BN nanospheres functionalized with mesoporous silica for enhancing CpG oligodeoxynucleotide-mediated cancer immunotherapy. Nanoscale, 2018, 10, 14516-14524.	2.8	25
351	LaB6 nanowires for supercapacitors. Materials Today Energy, 2018, 10, 28-33.	2.5	25
352	Donor–Acceptor Nanoensembles Based on Boron Nitride Nanotubes. Advanced Materials, 2007, 19, 934-938.	11.1	24
353	Recent Advances in Boron Nitride Nanotubes and Nanosheets. Israel Journal of Chemistry, 2010, 50, 405-416.	1.0	24
354	All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chemical Engineering Journal, 2022, 430, 132718.	6.6	24
355	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€ŀon Batteries. Angewandte Chemie, 2022, 134, .	1.6	24
356	Mechanistic Study of Interfacial Modification for Stable Zn Anode Based on a Thin Separator. Small, 2022, 18, e2201045.	5.2	24
357	The magnetohydrodynamic effect enables a dendrite-free Zn anode in alkaline electrolytes. Journal of Materials Chemistry A, 2022, 10, 11971-11979.	5.2	24
358	Synthesis and field-electron-emission behavior of aligned GaAs nanowires. Applied Physics Letters, 2005, 86, 213108.	1.5	23
359	Bifunctional separators design for safe lithium-ion batteries: Suppressed lithium dendrites and fire retardance. Nano Energy, 2022, 97, 107204.	8.2	23
360	Tapered Carbon Nanotubes from Activated Carbon Powders. Advanced Materials, 2006, 18, 197-200.	11.1	22

#	Article	IF	CITATIONS
361	Ordering of lipid membranes altered by boron nitride nanosheets. Physical Chemistry Chemical Physics, 2018, 20, 3903-3910.	1.3	22
362	Strengthening absorption ability of Co–N–C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. Green Energy and Environment, 2023, 8, 459-469.	4.7	22
363	GaN-filled carbon nanotubes: synthesis and photoluminescence. Chemical Physics Letters, 2003, 381, 715-719.	1.2	21
364	Field emission characteristics of oriented-AlN thin film on tungsten tip. Applied Surface Science, 2005, 251, 215-219.	3.1	21
365	Layer-by-Layer Assembly of Multifunctional Porous N-Doped Carbon Nanotube Hybrid Architectures for Flexible Conductors and Beyond. ACS Applied Materials & Interfaces, 2015, 7, 6716-6723.	4.0	21
366	A Building Brick Principle to Create Transparent Composite Films with Multicolor Emission and Selfâ€Healing Function. Small, 2018, 14, e1800315.	5.2	21
367	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie, 2021, 133, 1024-1034.	1.6	21
368	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, e202111826.	7.2	21
369	New Crystalline Phase Induced by Boron Nitride Nanotubes in Polyaniline. Journal of Physical Chemistry C, 2008, 112, 17592-17595.	1.5	20
370	Recently advances in flexible zinc ion batteries. Journal of Semiconductors, 2021, 42, 101603.	2.0	20
371	Highâ€Voltage Organic Cathodes for Zincâ€Ion Batteries through Electron Cloud and Solvation Structure Regulation. Angewandte Chemie, 2022, 134, .	1.6	20
372	Ionic Liquid-Softened Polymer Electrolyte for Anti-Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 27287-27293.	4.0	20
373	Two-body abrasion wear mechanism of super bainitic steel. Materials Science and Technology, 2017, 33, 893-898.	0.8	19
374	The energy storage mechanisms of MnO2 in batteries. Current Opinion in Electrochemistry, 2021, 30, 100769.	2.5	19
375	Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage. Nano-Micro Letters, 2021, 13, 178.	14.4	19
376	Synergistic modulation of local environment for electrochemical nitrate reduction via asymmetric vacancies and adjacent ion clusters. Nano Energy, 2022, 98, 107338.	8.2	19
377	BiOI Nanopaper As a High-Capacity, Long-Life and Insertion-Type Anode for a Flexible Quasi-Solid-State Zn-Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 25516-25523.	4.0	19
378	Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers. Nanotechnology, 2015, 26, 115702.	1.3	18

#	Article	IF	CITATIONS
379	The electromagnetic property and microwave absorption of wormhole-like mesoporous carbons with different surface areas. Journal of Materials Science, 2016, 51, 9723-9731.	1.7	18
380	Band offsets in new BN/BX (X = P, As, Sb) lateral heterostructures based on bond-orbital theory. Nanoscale, 2018, 10, 15918-15925.	2.8	18
381	Cl [–] /SO ₃ ^{2–} -Codoped Poly(3,4-ethylenedioxythiophene) That Interpenetrates and Encapsulates Porous Fe ₂ O ₃ To Form Composite Nanoframeworks for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30801-30809.	4.0	18
382	Three-dimensional porous boron nitride foam for effective CO2 adsorption. Solid State Communications, 2019, 294, 1-5.	0.9	18
383	Severe hepatitis treated with an artificial liver support system. International Journal of Artificial Organs, 2001, 24, 297-303.	0.7	17
384	Single-source precursor for chemical vapour deposition of collapsed boron nitride nanotubes. Nanotechnology, 2006, 17, 5882-5888.	1.3	17
385	Boron Nitride Nanotubes: Nanoparticles Functionalization and Junction Fabrication. Journal of Nanoscience and Nanotechnology, 2007, 7, 530-534.	0.9	17
386	Noncovalent functionalization of boron nitride nanotubes using water-soluble synthetic polymers and the subsequent preparation of superhydrophobic surfaces. Polymer Journal, 2013, 45, 567-570.	1.3	17
387	RBC membrane camouflaged boron nitride nanospheres for enhanced biocompatible performance. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110964.	2.5	17
388	Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries. Nano Energy, 2022, 98, 107278.	8.2	17
389	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research, 2022, 2022, .	2.8	17
390	Synthesis of semiconductor nanowires by annealing. Applied Physics Letters, 2004, 85, 1802-1804.	1.5	16
391	Electronic structure of boron nitride cone-shaped nanostructures. Physical Review B, 2005, 72, .	1.1	16
392	Tubular Carbon Nano-/Microstructures Synthesized from Graphite Powders by an in Situ Template Process. Journal of Physical Chemistry B, 2006, 110, 10714-10719.	1.2	16
393	Weak morphology dependent valence band structure of boron nitride. Journal of Applied Physics, 2013, 114, .	1.1	16
394	The depth-profiled carrier concentration and scattering mechanism in undoped GaN film grown on sapphire. Journal of Applied Physics, 2004, 96, 1120-1126.	1.1	15
395	Boron nitride nanotubes as novel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples. Analytical and Bioanalytical Chemistry, 2014, 406, 5751-5754.	1.9	15
396	Dispersion of Boron Nitride Nanotubes in Aqueous Solution by Simple Aromatic Molecules. Journal of Nanoscience and Nanotechnology, 2014, 14, 3028-3033.	0.9	15

#	Article	IF	CITATIONS
397	Ultrasmall Fe ₂ O ₃ Nanoparticles Anchored on Threeâ€Dimensional Hierarchical Porous Grapheneâ€like Networks for High Rate Capability Supercapacitors. ChemElectroChem, 2016, 3, 1820-1826.	1.7	15
398	Boron ink assisted <i>in situ</i> boron nitride coatings for anti-oxidation and anti-corrosion applications. Nanotechnology, 2019, 30, 335704.	1.3	15
399	Energy-dissipative dual-crosslinked hydrogels for dynamically super-tough sensors. Science China Materials, 2021, 64, 2764-2776.	3.5	15
400	Nucleotide-assisted decoration of boron nitride nanotubes with semiconductor quantum dots endows valuable visible-light emission in aqueous solution. Soft Matter, 2011, 7, 8753.	1.2	14
401	Preparation and Hydrogen Sorption Performances of BCNO Porous Microbelts with Ultraâ€Narrow and Tunable Pore Widths. Chemistry - an Asian Journal, 2013, 8, 2936-2939.	1.7	14
402	Quenching and partitioning steel produced through hot rolling, direct quenching and annealing. Materials Science and Technology, 2016, 32, 1605-1612.	0.8	14
403	Perspective on Micro-Supercapacitors. Frontiers in Chemistry, 2021, 9, 807500.	1.8	14
404	An Intrinsically Selfâ€Healing NiCo Zn Rechargeable Battery with a Selfâ€Healable Ferricâ€Ionâ€Crosslinking Sodium Polyacrylate Hydrogel Electrolyte. Angewandte Chemie, 2018, 130, 9958-9961.	1.6	13
405	Highâ€Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrierâ€Hosting Potential Compensation. Angewandte Chemie, 2021, 133, 5503-5512.	1.6	13
406	Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. Nano Research, 2021, 14, 4154-4162.	5.8	13
407	Adhesive and cohesive force matters in deformable batteries. Npj Flexible Electronics, 2021, 5, .	5.1	13
408	Field-Effect Transistors: Ultrathin MXene-Micropattern-Based Field-Effect Transistor for Probing Neural Activity (Adv. Mater. 17/2016). Advanced Materials, 2016, 28, 3411-3411.	11.1	12
409	Large scale fabrication of graphene for oil and organic solvent absorption. Progress in Natural Science: Materials International, 2016, 26, 319-323.	1.8	12
410	Resonance Raman scattering of boron carbonitride nanotubes. Applied Physics Letters, 2004, 84, 1549-1551.	1.5	11
411	Electron-beam irradiation induced conductivity in ZnS nanowires as revealed by in situ transmission electron microscope. Journal of Applied Physics, 2009, 106, 034302.	1.1	11
412	Synthesis of nanoporous spheres of cubic gallium oxynitride and their lithium ion intercalation properties. Nanotechnology, 2010, 21, 115705.	1.3	11
413	Relieving hydrogen evolution and anodic corrosion of aqueous aluminum batteries with hybrid electrolytes. Journal of Materials Chemistry A, 2022, 10, 4739-4748.	5.2	11
414	Photoinduced Charge Injection and Bandgap-Engineering of High-Specific-Surface-Area BN Nanotubes using a Zinc Phthalocyanine Monolayer. Small, 2007, 3, 1330-1335.	5.2	10

#	Article	IF	CITATIONS
415	Silicon multi-branch nanostructures for decent field emission and excellent electrical transport. Nanotechnology, 2011, 22, 145705.	1.3	10
416	Cas-phase anion exchange towards ZnO/ZnSe heterostructures with intensive visible light emission. Journal of Materials Chemistry C, 2014, 2, 2793-2798.	2.7	10
417	Graphene stirrer with designed movements: Targeting on environmental remediation and supercapacitor applications. Green Energy and Environment, 2018, 3, 86-96.	4.7	10
418	<i>In situ</i> doping and synthesis of two-dimensional nanomaterials using mechano-chemistry. Nanoscale Horizons, 2019, 4, 642-646.	4.1	10
419	Stable bismuth-antimony alloy cathode with a conversion-dissolution/deposition mechanism for high-performance zinc batteries. Materials Today, 2021, 51, 87-95.	8.3	10
420	Dendrite Issues for Zinc Anodes in a Flexible Cell Configuration for Zincâ€Based Wearable Energyâ€&torage Devices. Angewandte Chemie, 2022, 134, .	1.6	10
421	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2022, 134, .	1.6	9
422	Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery. Chinese Chemical Letters, 2023, 34, 107600.	4.8	8
423	Irreversible Pressure-Induced Transformation of Boron Nitride Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 1810-1814.	0.9	7
424	Functionalization of boron nitride nanotubes for applications in nanobiomedicine. , 2016, , 17-40.		7
425	Reversible Intercalation of Alâ€lons in Poly(3,4â€Ethylenedioxythiophene):Poly(4â€Styrenesulfonate) Electrode for Aqueous Electrochemical Capacitors with High Energy Density. Energy Technology, 2021, 9, 2001036.	1.8	7
426	Conjugated cobalt polyphthalocyanine with defective π-π extended structure for enhanced rechargeable li-oxygen batteries. Chemical Engineering Journal, 2022, 444, 136544.	6.6	7
427	Effects of tea polyphenols on telomerase activity of a tongue cancer cell line: a preliminary study. International Journal of Oral and Maxillofacial Surgery, 2006, 35, 352-355.	0.7	6
428	Bifunctional Catalysts for Metalâ€Air Batteries. Batteries and Supercaps, 2019, 2, 270-271.	2.4	6
429	Carbonaceous and Polymer Materials for Li–S Batteries with an Emphasis on Flexible Devices. Advanced Energy and Sustainability Research, 2021, 2, 2000096.	2.8	6
430	Battery-Sensor Hybrid: A New Cas Sensing Paradigm with Complete Energy Self-Sufficiency. ACS Applied Materials & Interfaces, 2021, 13, 46507-46517.	4.0	6
431	Engineering gap fill, microstructure and film composition of electroplated copper for on-chip metallization. , 2001, , .		5
432	Boron Carbonitride Nanofibers: Synthesis, Characterization, and Photoluminescence Properties. Journal of Nanoscience and Nanotechnology, 2001, 1, 55-58.	0.9	5

#	Article	IF	CITATIONS
433	Thermally Conductive Electrically Insulating Polymer Nanocomposites. , 2016, , 281-321.		5
434	Fe,N Doped 2D Porous Carbon Bifunctional Catalyst for Zinc-air Battery. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34, 103.	0.6	5
435	Flexible, Electrically Conductive, Nanostructured, Asymmetric Aerogel Films for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 59174-59184.	4.0	5
436	H ₂ â€Inhibited Organic Anodes for Fast and Longâ€Life Aqueous Aluminum Ion Batteries with a 3.5â€Month Calendar Life. Small, 2022, 18, e2200463.	5.2	5
437	Functional boron nitride nanotubes. , 2010, , .		4
438	Electron-beam induced electric-hydraulic expansion in a silica-shelled gallium microball-nanotube structure. Applied Physics Letters, 2011, 99, 083112.	1.5	4
439	Twoâ€Electron Redox Chemistry Enabled Highâ€Performance Iodideâ€Ion Conversion Battery. Angewandte Chemie, 2022, 134, .	1.6	4
440	Synthesis and Molecular Modeling of Novel HSV1 Uracil-DNA Glycosylase Inhibitors. Nucleosides & Nucleotides, 1999, 18, 709-711.	0.5	3
441	Boron Nitride Nanotubes: Recent Breakthroughs and Challenges. ECS Transactions, 2007, 11, 15-21.	0.3	2
442	Publisher's Note: Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization [Phys. Rev. B74, 153413 (2006)]. Physical Review B, 2006, 74, .	1.1	1
443	Energy and Optoelectronic Related Nanomaterials and Applications. Small, 2017, 13, 1703395.	5.2	1
444	Customer oriented technologies for innovative leading edge foundry manufacturing. , 0, , .		0
445	Novel Synthesis and Functionalization of Boron Nitride Nanotubes. Microscopy and Microanalysis, 2006, 12, 496-497.	0.2	Ο
446	In situ TEM measurements of nanotube and nanosheet properties. Microscopy and Microanalysis, 2012, 18, 1542-1543.	0.2	0
447	Nonwetting behavior of "white" graphene coatings. , 2012, , .		0
448	Preparation of Antibodies to Paclitaxel. Planta Medica, 2013, 79, .	0.7	0
449	Novel Nanotechnology For The Practical Application Of Aqueous Sodium Ion Capacitors. , 2018, , .		0
450	(Invited) Carbon Nanostructure for Flexible Zinc Ion Storage. ECS Meeting Abstracts, 2020, MA2020-01, 593-593.	0.0	0

#	Article	IF	CITATIONS
451	A comprehensive panel of mutation scanning assays detects mutations in the APC, TP53, KRAS, BRAF genes and hypermethylated APC and MLH1 DNA in plasma of patients with various stages of colorectal cancer: Utility for early detection, prognosis, and disease monitoring. Journal of Clinical Oncology, 2004, 22, 3765-3765.	0.8	0
452	Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie, 2022, 134, .	1.6	0