Carmen Grijota-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8453076/publications.pdf

Version: 2024-02-01

567281 642732 30 910 15 23 g-index citations h-index papers 31 31 31 934 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Fasciclin 2 engages EGFR in an auto-stimulatory loop to promote imaginal disc cell proliferation in Drosophila. PLoS Genetics, 2022, 18, e1010224.	3.5	1
2	Availability and metabolism of thyroid hormones in the developing brain., 2021,, 471-481.		0
3	BMP8 and activated brown adipose tissue in human newborns. Nature Communications, 2021, 12, 5274.	12.8	24
4	Endocrine aspects of development. Thyroid hormone actions in neurological processes during brain development., 2021,, 85-97.		1
5	Orally Induced Hyperthyroidism Regulates Hypothalamic AMP-Activated Protein Kinase. Nutrients, 2021, 13, 4204.	4.1	2
6	Intranasal delivery of Thyroid hormones in MCT8 deficiency. PLoS ONE, 2020, 15, e0236113.	2.5	9
7	MCT8 Deficiency: The Road to Therapies for a Rare Disease. Frontiers in Neuroscience, 2020, 14, 380.	2.8	28
8	Intranasal delivery of Thyroid hormones in MCT8 deficiency. , 2020, 15, e0236113.		0
9	Intranasal delivery of Thyroid hormones in MCT8 deficiency. , 2020, 15, e0236113.		O
10	Intranasal delivery of Thyroid hormones in MCT8 deficiency. , 2020, 15, e0236113.		0
11	Intranasal delivery of Thyroid hormones in MCT8 deficiency. , 2020, 15, e0236113.		O
12	Adult Mice Lacking Mct8 and Dio2 Proteins Present Alterations in Peripheral Thyroid Hormone Levels and Severe Brain and Motor Skill Impairments. Thyroid, 2019, 29, 1669-1682.	4.5	37
13	Intracerebroventricular administration of the thyroid hormone analog TRIAC increases its brain content in the absence of MCT8. PLoS ONE, 2019, 14, e0226017.	2.5	11
14	Uridine-5′-Triphosphate Partially Blocks Differentiation Signals and Favors a more Repair State in Cultured rat Schwann Cells. Neuroscience, 2018, 372, 255-265.	2.3	6
15	Sobetirome and its Amide Prodrug Sob-AM2 Exert Thyromimetic Actions in Mct8-Deficient Brain. Thyroid, 2018, 28, 1211-1220.	4.5	20
16	Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2799-E2804.	3.6	117
17	Uridine 5′-Triphosphate Promotes In Vitro Schwannoma Cell Migration through Matrix Metalloproteinase-2 Activation. PLoS ONE, 2014, 9, e98998.	2.5	26
18	Increased Oxidative Metabolism and Neurotransmitter Cycling in the Brain of Mice Lacking the Thyroid Hormone Transporter Slc16a2 (Mct8). PLoS ONE, 2013, 8, e74621.	2.5	13

#	Article	IF	CITATIONS
19	Redundancy or specificity? The role of the CDK Pho85 in cell cycle control. International Journal of Biochemistry and Molecular Biology, 2013, 4, 140-9.	0.1	9
20	L1CAM Binds ErbB Receptors through Ig-Like Domains Coupling Cell Adhesion and Neuregulin Signalling. PLoS ONE, 2012, 7, e40674.	2.5	25
21	In Vivo Activity of the Thyroid Hormone Receptor \hat{l}^2 - and \hat{l} ±-Selective Agonists GC-24 and CO23 on Rat Liver, Heart, and Brain. Endocrinology, 2011, 152, 1136-1142.	2.8	33
22	Lack of Action of Exogenously Administered T3 on the Fetal Rat Brain Despite Expression of the Monocarboxylate Transporter 8. Endocrinology, 2011, 152, 1713-1721.	2.8	73
23	Lack of Action of Exogenously Administered T3 on the Fetal Rat Brain Despite Expression of the Monocarboxylate Transporter 8. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 870-870.	3.6	0
24	Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice. Endocrinology, 2010, 151, 2381-2387.	2.8	105
25	Thyroid Hormone Regulation of Gene Expression in the Developing Rat Fetal Cerebral Cortex: Prominent Role of the Ca2+/Calmodulin-Dependent Protein Kinase IV Pathway. Endocrinology, 2010, 151, 810-820.	2.8	79
26	Importance of Monocarboxylate Transporter 8 for the Blood-Brain Barrier-Dependent Availability of 3,5,3′-Triiodo-l-Thyronine. Endocrinology, 2009, 150, 2491-2496.	2.8	142
27	The promoter of ZmMRP-1, a maize transfer cell-specific transcriptional activator, is induced at solute exchange surfaces and responds to transport demands. Planta, 2009, 229, 235-247.	3.2	44
28	Acción directa de la triyodotironina en la expresión génica de cerebro y cerebelo en el perÃodo neonatal. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2008, 55, 319-325.	0.8	1
29	Thyroid Hormone Action in the Adult Brain: Gene Expression Profiling of the Effects of Single and Multiple Doses of Triiodo-l-Thyronine in the Rat Striatum. Endocrinology, 2008, 149, 3989-4000.	2.8	68
30	A combined approach identifies a limited number of new thyroid hormone target genes in post-natal mouse cerebellum. Journal of Molecular Endocrinology, 2007, 39, 17-28.	2.5	35