
Oriol Dols-Icardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8453064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	4.9	1,414
2	Dissecting phenotypic traits linked to human resilience to Alzheimer's pathology. Brain, 2013, 136, 2510-2526.	3.7	294
3	Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson's disease course. Movement Disorders, 2012, 27, 393-399.	2.2	144
4	Characterization of the repeat expansion size in C9orf72 in amyotrophic lateral sclerosis and frontotemporal dementia. Human Molecular Genetics, 2014, 23, 749-754.	1.4	98
5	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	3.9	93
6	Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer's disease and frontotemporal dementia. Neurobiology of Aging, 2014, 35, 444.e1-444.e4.	1.5	92
7	A nonsynonymous mutation in PLCC2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathologica, 2019, 138, 237-250.	3.9	87
8	Analysis of the <i>C9orf72</i> Gene in Patients with Amyotrophic Lateral Sclerosis in Spain and Different Populations Worldwide. Human Mutation, 2013, 34, 79-82.	1.1	85
9	CSF sAPPβ, YKL-40, and NfL along the ALS-FTD spectrum. Neurology, 2018, 91, e1619-e1628.	1.5	59
10	Analysis of the <i>CHCHD10</i> gene in patients with frontotemporal dementia and amyotrophic lateral sclerosis from Spain. Brain, 2015, 138, e400-e400.	3.7	56
11	Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 684-691.	0.9	55
12	Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	54
13	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population‣pecific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	2.2	47
14	MAPT H1 haplotype is associated with enhanced α-synuclein deposition in dementia with Lewy bodies. Neurobiology of Aging, 2013, 34, 936-942.	1.5	45
15	Analysis of known amyotrophic lateral sclerosis and frontotemporal dementia genes reveals a substantial genetic burden in patients manifesting both diseases not carrying the <i>C9orf72</i> expansion mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 162-168.	0.9	44
16	The Sant Pau Initiative on Neurodegeneration (SPIN) cohort: A data set for biomarker discovery and validation in neurodegenerative disorders. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 597-609.	1.8	44
17	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	5.8	44
18	Cerebrospinal Fluid Anti-Amyloid-β Autoantibodies and Amyloid PET in Cerebral Amyloid Angiopathy-Related Inflammation. Journal of Alzheimer's Disease, 2016, 50, 1-7.	1.2	43

ORIOL DOLS-ICARDO

#	Article	IF	CITATIONS
19	Progranulin Protein Levels in Cerebrospinal Fluid in Primary Neurodegenerative Dementias. Journal of Alzheimer's Disease, 2016, 50, 539-546.	1.2	38
20	Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer's disease. Neurobiology of Aging, 2020, 87, 139.e1-139.e7.	1.5	35
21	MAPT H1 Haplotype is Associated with Late-Onset Alzheimer's Disease Risk in APOE ɛ4 Noncarriers: Results from the Dementia Genetics Spanish Consortium. Journal of Alzheimer's Disease, 2015, 49, 343-352.	1.2	32
22	Assessing circular RNAs in Alzheimer's disease and frontotemporal lobar degeneration. Neurobiology of Aging, 2020, 92, 7-11.	1.5	30
23	Rare Variants in Calcium Homeostasis Modulator 1 (CALHM1) Found in Early Onset Alzheimer's Disease Patients Alter Calcium Homeostasis. PLoS ONE, 2013, 8, e74203.	1.1	26
24	Downregulation of miR-335-5P in Amyotrophic Lateral Sclerosis Can Contribute to Neuronal Mitochondrial Dysfunction and Apoptosis. Scientific Reports, 2020, 10, 4308.	1.6	26
25	HTT gene intermediate alleles in neurodegeneration: evidence for association with Alzheimer's disease. Neurobiology of Aging, 2019, 76, 215.e9-215.e14.	1.5	21
26	Cortical microstructure in the amyotrophic lateral sclerosis–frontotemporal dementia continuum. Neurology, 2020, 95, e2565-e2576.	1.5	19
27	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1032.	4.9	15
28	Expansion mutation in C9ORF72 does not influence plasma progranulin levels in frontotemporal dementia. Neurobiology of Aging, 2012, 33, 1851.e17-1851.e19.	1.5	13
29	Quantitative Genetics Validates Previous Genetic Variants and Identifies Novel Genetic Players Influencing Alzheimer's Disease Cerebrospinal Fluid Biomarkers. Journal of Alzheimer's Disease, 2018, 66, 639-652.	1.2	12
30	Diagnostic Utility of Measuring Cerebral Atrophy in the Behavioral Variant of Frontotemporal Dementia and Association With Clinical Deterioration. JAMA Network Open, 2021, 4, e211290.	2.8	12
31	Comparison of 2 Diagnostic Criteria for the Behavioral Variant of Frontotemporal Dementia. American Journal of Alzheimer's Disease and Other Dementias, 2013, 28, 469-476.	0.9	10
32	Heterozygous <i>APOE</i> Christchurch in familial Alzheimer's disease without mutations in other Mendelian genes. Neuropathology and Applied Neurobiology, 2021, 47, 579-582.	1.8	10
33	Cortical microstructure in primary progressive aphasia: a multicenter study. Alzheimer's Research and Therapy, 2022, 14, 27.	3.0	10
34	Assessing the role of TUBA4A gene in frontotemporal degeneration. Neurobiology of Aging, 2016, 38, 215.e13-215.e14.	1.5	9
35	Early Cerebellar Hypometabolism in Patients With Frontotemporal Dementia Carrying the C9orf72 Expansion. Alzheimer Disease and Associated Disorders, 2015, 29, 353-356.	0.6	8
36	Genetic variation in APOE, GRN, and TP53 are phenotype modifiers in frontotemporal dementia. Neurobiology of Aging, 2021, 99, 99.e15-99.e22.	1.5	8

ORIOL DOLS-ICARDO

#	Article	IF	CITATIONS
37	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.5	7
38	Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Molecular Neurodegeneration, 2022, 17, 29.	4.4	7
39	Pathophysiological Underpinnings of Extra-Motor Neurodegeneration in Amyotrophic Lateral Sclerosis: New Insights From Biomarker Studies. Frontiers in Neurology, 2021, 12, 750543.	1.1	6
40	Genetic architecture of neurodegenerative dementias. Neuropharmacology, 2020, 168, 108014.	2.0	5
41	Distinct Clinical Features and Outcomes in Motor Neuron Disease Associated with Behavioural Variant Frontotemporal Dementia. Dementia and Geriatric Cognitive Disorders, 2018, 45, 220-231.	0.7	4
42	Developmental Dynamic Dysphasia: Are Bilateral Brain Abnormalities a Signature of Inefficient Neural Plasticity?. Frontiers in Human Neuroscience, 2020, 14, 73.	1.0	4
43	Effect of <scp><i>REST</i></scp> on brain metabolism in the Alzheimer disease continuum. Annals of Neurology, 2015, 78, 661-662.	2.8	2
44	Absence of pathogenic mutations in CD59 in chronic inflammatory demyelinating polyradiculoneuropathy. PLoS ONE, 2019, 14, e0212647.	1.1	2
45	Smoking is associated with age at disease onset in Parkinson's disease. Parkinsonism and Related Disorders, 2022, 97, 79-83.	1.1	2
46	Neuropathology of a patient with Alzheimer disease treated with low doses of verubecestat. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	1
47	Calsynteninâ€1 is a cerebrospinal fluid marker of frontotemporal dementiaâ€related synapse degeneration. Alzheimer's and Dementia, 2021, 17, .	0.4	1
48	P2-132: BIOMARKERS IN CEREBRAL AMYLOID ANGIOPATHY-RELATED INFLAMMATION. , 2014, 10, P519-P519.		0
49	P1â€⊉93: IDENTIFICATION OF EXOSOMAL MICRORNAS AS POTENTIAL DIAGNOSTIC BIOMARKERS FOR FRONTOTEMPORAL DEMENTIA. Alzheimer's and Dementia, 2018, 14, P398.	0.4	Ο
50	Oligodendroglial alterations in FTD caused by C9orf72 expansion. Alzheimer's and Dementia, 2020, 16, e040196.	0.4	0
51	Transcriptome characterization of the motor cortex suggests microglialâ€related key events due to TDPâ€43 aberrant inclusions. Alzheimer's and Dementia, 2020, 16, e042953.	0.4	0