Liang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8453055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Industrially relevant CHA membranes for CO2/CH4 separation. Journal of Membrane Science, 2022, 641, 119888.	4.1	42
2	The origin of the surface barrier in nanoporous materials. Journal of Membrane Science, 2022, 641, 119893.	4.1	10
3	Recovery of helium from natural gas using MFI membranes. Journal of Membrane Science, 2022, 644, 120113.	4.1	6
4	Bacterial cellulose assisted synthesis of hierarchical pompon-like SAPO-34 for CO2 adsorption. Microporous and Mesoporous Materials, 2022, 331, 111664.	2.2	5
5	Mass transport of CO2 over CH4 controlled by the selective surface barrier in ultra-thin CHA membranes. Microporous and Mesoporous Materials, 2022, 332, 111716.	2.2	7
6	Ultra-thin zeolite CHA and FAU membranes for desalination by pervaporation. Separation and Purification Technology, 2022, 294, 121177.	3.9	5
7	Zeolite membrane process for industrial CO2/CH4 separation. Chemical Engineering Journal, 2022, 446, 137223.	6.6	14
8	Removal of dyes from aqueous solution using novel C@C composite adsorbents. Microporous and Mesoporous Materials, 2021, 313, 110840.	2.2	15
9	Microporous Nickel-Coordinated Aminosilica Membranes for Improved Pervaporation Performance of Methanol/Toluene Separation. ACS Applied Materials & amp; Interfaces, 2021, 13, 23247-23259.	4.0	23
10	C@TiO2 core-shell adsorbents for efficient rhodamine B adsorption from aqueous solution. Microporous and Mesoporous Materials, 2021, 320, 111110.	2.2	7
11	Monolithic carbon aerogels from bioresources and their application for CO2 adsorption. Microporous and Mesoporous Materials, 2021, 323, 111236.	2.2	10
12	Efficient synthesis of polyether polyols in simple microreactors. Reaction Chemistry and Engineering, 2021, 6, 685-693.	1.9	2
13	Preparation of Silica@Silica Core–Shell Microspheres Using an Aqueous Two-Phase System in a Novel Microchannel Device. Langmuir, 2020, 36, 576-584.	1.6	6
14	High performance fluoride MFI membranes for efficient CO2/H2 separation. Journal of Membrane Science, 2020, 616, 118623.	4.1	15
15	Highly permeable and selective tubular zeolite CHA membranes. Journal of Membrane Science, 2019, 588, 117224.	4.1	52
16	Preparation of carbon/cobalt composite from phenolic resin and ZIF-67 for efficient tannic acid adsorption. Microporous and Mesoporous Materials, 2019, 287, 9-17.	2.2	21
17	Ultra-thin MFI membranes with different Si/Al ratios for CO2/CH4 separation. Microporous and Mesoporous Materials, 2019, 284, 258-264.	2.2	33
18	A novel method for fabrication of high-flux zeolite membranes on supports with arbitrary geometry. Journal of Materials Chemistry A, 2019, 7, 10325-10330.	5.2	25

Liang Yu

#	Article	IF	CITATIONS
19	Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity. Microporous and Mesoporous Materials, 2019, 278, 267-274.	2.2	28
20	Two-Phase Diffusion Technique for the Preparation of Ultramacroporous/Mesoporous Silica Microspheres via Interface Hydrolysis, Diffusion, and Gelation of TEOS. Langmuir, 2018, 34, 2046-2056.	1.6	4
21	Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2018, 6, 6847-6853.	5.2	75
22	Ultra-thin MFI membranes for removal of C3+ hydrocarbons from methane. Journal of Membrane Science, 2018, 551, 254-260.	4.1	30
23	Preparation of hollow zeolite NaA/chitosan composite microspheres via in situ hydrolysis-gelation-hydrothermal synthesis of TEOS. Microporous and Mesoporous Materials, 2018, 257, 262-271.	2.2	15
24	Fabrication of PAA–PETPTA Janus Microspheres with Respiratory Function for Controlled Release of Guests with Different Sizes. Langmuir, 2018, 34, 7106-7116.	1.6	12
25	Preparation of size-controllable monodispersed carbon@silica core-shell microspheres and hollow silica microspheres. Microporous and Mesoporous Materials, 2017, 247, 75-85.	2.2	9
26	Ultra-thin MFI membranes for olefin/nitrogen separation. Journal of Membrane Science, 2017, 524, 428-435.	4.1	41
27	In situ impregnationâ^'gelationâ^'hydrothermal crystallization synthesis of hollow fiber zeolite NaA membrane. Microporous and Mesoporous Materials, 2017, 244, 278-283.	2.2	10
28	A universal biological-materials-assisted hydrothermal route to prepare various inorganic hollow microcapsules in the presence of pollens. Powder Technology, 2016, 301, 26-33.	2.1	11
29	A simple method for blocking defects in zeolite membranes. Journal of Membrane Science, 2015, 489, 270-274.	4.1	25
30	Very high flux MFI membranes for alcohol recovery via pervaporation at high temperature and pressure. Separation and Purification Technology, 2015, 153, 138-145.	3.9	26
31	Synthesis of binderless zeolite X microspheres and their CO2 adsorption properties. Separation and Purification Technology, 2013, 118, 188-195.	3.9	48
32	Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities. Materials Science and Engineering C, 2013, 33, 3652-3660.	3.8	55
33	A two-phase segmented microfluidic technique for one-step continuous versatile preparation of zeolites. Chemical Engineering Journal, 2013, 219, 78-85.	6.6	33
34	Synthesis of Monodisperse Zeolite A/Chitosan Hybrid Microspheres and Binderless Zeolite A Microspheres. Industrial & Engineering Chemistry Research, 2012, 51, 2299-2308.	1.8	34
35	Influence of glycerol cosolvent on the synthesis of size controllable zeolite A. Materials Letters, 2011, 65, 2304-2306.	1.3	18