Ingo Tews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8452941/publications.pdf

Version: 2024-02-01

186265 302126 3,699 41 28 39 h-index citations g-index papers 42 42 42 1846 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Quantifying modeling uncertainties when combining multiple gravitational-wave detections from binary neutron star sources. Physical Review D, 2022, 105, .	4.7	12
2	Constraining neutron-star matter with microscopic and macroscopic collisions. Nature, 2022, 606, 276-280.	27.8	112
3	Combining Electromagnetic and Gravitational-Wave Constraints on Neutron-Star Masses and Radii. Physical Review Letters, 2021, 126, 061101.	7.8	57
4	On the Nature of GW190814 and Its Impact on the Understanding of Supranuclear Matter. Astrophysical Journal Letters, 2021, 908, L1. Constraints on the nuclear symmetry energy from asymmetric-matter calculations with chiral	8.3	80
5	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi>N< and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>N</mml:mi></mml:mrow></mml:math></mml:mrow></mml:math></pre>	2.7	20
6	Interactions. Physical Review C. 2021, 103, Chiral Effective Field Theory's Impact on Advancing Quantum Monte Carlo Methods. Few-Body Systems, 2021, 62, 1.	1.5	3
7	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Pb</mml:mi></mml:mrow><mml:mpres></mml:mpres><mml:none></mml:none><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mmultiscripts></mml:mrow>	scripts 7.8	94
8	with Minimal Modeling Assumptions, Physical Review Letters, 2021, 127, 192701. Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER's PSR J0740+6620 Measurement. Astrophysical Journal, 2021, 922, 14.	4.5	75
9	Detailed examination of astrophysical constraints on the symmetry energy and the neutron skin of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Pb</mml:mi><mml:mprescr /><mml:none></mml:none><mml:mn>208</mml:mn></mml:mprescr </mml:mmultiscripts> with minimal modeling</mml:math 	ripts	38
10	What can neutron stars reveal about the equation of state of dense matter?. EPJ Web of Conferences, 2020, 235, 07002.	0.3	0
11	Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science, 2020, 370, 1450-1453.	12.6	239
12	Direct astrophysical tests of chiral effective field theory at supranuclear densities. Physical Review C, 2020, 102, .	2.9	73
13	Quantum Monte Carlo Methods for Astrophysical Applications. Frontiers in Physics, 2020, 8, .	2.1	9
14	Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nature Astronomy, 2020, 4, 625-632.	10.1	269
15	Local Nucleon-Nucleon and Three-Nucleon Interactions Within Chiral Effective Field Theory. Frontiers in Physics, 2020, 7, .	2.1	39
16	Spin-polarized Neutron Matter, the Maximum Mass of Neutron Stars, and GW170817. Astrophysical Journal, 2020, 892, 14.	4.5	10
17	New ideas in constraining nuclear forces. Journal of Physics G: Nuclear and Particle Physics, 2020, 47, 103001.	3.6	34
18	Nuclear and neutron-star matter from local chiral interactions. Physical Review Research, 2020, 2, .	3.6	61

#	Article	IF	Citations
19	Parameter estimation for strong phase transitions in supranuclear matter using gravitational-wave astronomy. Physical Review Research, 2020, 2, .	3.6	19
20	From the microscopic to the macroscopic world: from nucleons to neutron stars. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 103001.	3.6	26
21	Confronting gravitational-wave observations with modern nuclear physics constraints. European Physical Journal A, 2019, 55, 1.	2.5	83
22	Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances. Annual Review of Nuclear and Particle Science, 2019, 69, 279-305.	10.2	62
23	Constraining the properties of dense matter and neutron stars by combining nuclear physics and gravitational waves from GW170817. AIP Conference Proceedings, 2019, , .	0.4	5
24	Dense matter with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	81
25	Critical examination of constraints on the equation of state of dense matter obtained from GW170817. Physical Review C, 2018, 98, .	2.9	238
26	Large-cutoff behavior of local chiral effective field theory interactions. Physical Review C, 2018, 98, .	2.9	6
27	Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations. Astrophysical Journal, 2018, 860, 149.	4.5	250
28	Spectrum of shear modes in the neutron-star crust: Estimating the nuclear-physics uncertainties. Physical Review C, 2017 , 95 , .	2.9	33
29	Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions. Physical Review C, 2017, 96, .	2.9	62
30	Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy. Astrophysical Journal, 2017, 848, 105.	4.5	233
31	Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials. Physical Review C, 2017, 96, .	2.9	31
32	Quantum Monte Carlo calculations of two neutrons in finite volume. Physical Review C, 2016, 94, .	2.9	15
33	Chiral Three-Nucleon Interactions in Light Nuclei, Neutron- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>α</mml:mi>Scattering, and Neutron Matter. Physical Review Letters. 2016, 116, 062501.</mml:math 	7.8	189
34	Quantum Monte Carlo calculations of neutron matter with chiral three-body forces. Physical Review C, 2016, 93, .	2.9	136
35	Regulator artifacts in uniform matter for chiral interactions. Physical Review C, 2016, 94, .	2.9	41
36	Neutron matter with Quantum Monte Carlo: chiral 3N forces and static response. Journal of Physics: Conference Series, 2016, 702, 012014.	0.4	0

Ingo Tews

#	Article	IF	CITATIONS
37	Local chiral effective field theory interactions and quantum Monte Carlo applications. Physical Review C, 2014, 90, .	2.9	186
38	The chiral condensate in neutron matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 726, 412-416.	4.1	16
39	Quantum MonteÂCarlo Calculations with Chiral Effective Field Theory Interactions. Physical Review Letters, 2013, 111, 032501.	7.8	257
40	Neutron matter from chiral effective field theory interactions. Physical Review C, 2013, 88, .	2.9	197
41	Neutron Matter at Next-to-Next-to-Next-to-Leading Order in Chiral Effective Field Theory. Physical Review Letters, 2013, 110, 032504.	7.8	300