Betsy J Barnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/845241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting potential drivers of COVID-19: Neutrophil extracellular traps. Journal of Experimental Medicine, 2020, 217, .	4.2	1,193
2	Neutrophil extracellular traps in COVID-19. JCI Insight, 2020, 5, .	2.3	988
3	Virus-specific Activation of a Novel Interferon Regulatory Factor, IRF-5, Results in the Induction of Distinct Interferon α Genes. Journal of Biological Chemistry, 2001, 276, 23382-23390.	1.6	343
4	The Interferon Regulatory Factor, IRF5, Is a Central Mediator of Toll-like Receptor 7 Signaling. Journal of Biological Chemistry, 2005, 280, 17005-17012.	1.6	340
5	Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. Journal of Leukocyte Biology, 2003, 74, 1125-1138.	1.5	296
6	Review: On the Role of IRF in Host Defense. Journal of Interferon and Cytokine Research, 2002, 22, 59-71.	0.5	293
7	Multiple Regulatory Domains of IRF-5 Control Activation, Cellular Localization, and Induction of Chemokines That Mediate Recruitment of T Lymphocytes. Molecular and Cellular Biology, 2002, 22, 5721-5740.	1.1	224
8	Global and Distinct Targets of IRF-5 and IRF-7 during Innate Response to Viral Infection. Journal of Biological Chemistry, 2004, 279, 45194-45207.	1.6	195
9	Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Human Molecular Genetics, 2008, 17, 872-881.	1.4	173
10	Two Discrete Promoters Regulate the Alternatively Spliced Human Interferon Regulatory Factor-5 Isoforms. Journal of Biological Chemistry, 2005, 280, 21078-21090.	1.6	136
11	Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death. Cancer Research, 2003, 63, 6424-31.	0.4	125
12	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	4.2	119
13	Signaling through IFN Regulatory Factor-5 Sensitizes p53-Deficient Tumors to DNA Damage–Induced Apoptosis and Cell Death. Cancer Research, 2005, 65, 7403-7412.	0.4	111
14	Virus-induced Heterodimer Formation betweenIRF-5 and IRF-7 Modulates Assembly of theIFNA Enhanceosome in Vivo and Transcriptional Activity of IFNA Genes. Journal of Biological Chemistry, 2003, 278, 16630-16641.	1.6	103
15	Genetic variants and diseaseâ€associated factors contribute to enhanced interferon regulatory factor 5 expression in blood cells of patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 562-573.	6.7	100
16	Chronic TLR7 and TLR9 signaling drives anemia via differentiation of specialized hemophagocytes. Science, 2019, 363, .	6.0	82
17	Differential Requirement of Histone Acetylase and Deacetylase Activities for IRF5-Mediated Proinflammatory Cytokine Expression. Journal of Immunology, 2010, 185, 6003-6012.	0.4	72
18	IRF-5 Is a Mediator of the Death Receptor-induced Apoptotic Signaling Pathway. Journal of Biological Chemistry, 2009, 284, 2767-2777.	1.6	71

Betsy J Barnes

#	Article	IF	CITATIONS
19	HMGB1–C1q complexes regulate macrophage function by switching between leukotriene and specialized proresolving mediator biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23254-23263.	3.3	64
20	Nebulized in-line endotracheal dornase alfa and albuterol administered to mechanically ventilated COVID-19 patients: a case series. Molecular Medicine, 2020, 26, 91.	1.9	62
21	Interferon regulatory factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type I interferons. Arthritis and Rheumatism, 2012, 64, 788-798.	6.7	61
22	Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers. Cancers, 2014, 6, 969-997.	1.7	60
23	<i><scp>I</scp>rf5</i> â€deficient mice are protected from pristaneâ€induced lupus via increased <scp>T</scp> h2 cytokines and altered <scp>I</scp> g <scp>G</scp> class switching. European Journal of Immunology, 2012, 42, 1477-1487.	1.6	58
24	Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Research, 2011, 13, R111.	2.2	56
25	TRIpartite Motif 21 (TRIM21) Differentially Regulates the Stability of Interferon Regulatory Factor 5 (IRF5) Isoforms. PLoS ONE, 2014, 9, e103609.	1.1	53
26	Monocytes from <i>Irf5â^'/â^'</i> Mice Have an Intrinsic Defect in Their Response to Pristane-Induced Lupus. Journal of Immunology, 2012, 189, 3741-3750.	0.4	49
27	B Cell-Intrinsic Role for IRF5 in TLR9/BCR-Induced Human B Cell Activation, Proliferation, and Plasmablast Differentiation. Frontiers in Immunology, 2017, 8, 1938.	2.2	48
28	Inhibition of IRF5 hyperactivation protects from lupus onset and severity. Journal of Clinical Investigation, 2020, 130, 6700-6717.	3.9	48
29	RNA-Seq for Enrichment and Analysis of IRF5 Transcript Expression in SLE. PLoS ONE, 2013, 8, e54487.	1.1	42
30	Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based?. Frontiers in Immunology, 2018, 9, 2622.	2.2	35
31	Interferon regulatory factor 5 (IRF5) suppresses hepatitis C virus (HCV) replication and HCV-associated hepatocellular carcinoma. Journal of Biological Chemistry, 2017, 292, 21676-21689.	1.6	34
32	IRF5 is a novel regulator of CXCL13 expression in breast cancer that regulates CXCR5 ⁺ B― and Tâ€cell trafficking to tumorâ€conditioned media. Immunology and Cell Biology, 2015, 93, 486-499.	1.0	33
33	Insulin-like growth factor receptor signaling in breast tumor epithelium protects cells from endoplasmic reticulum stress and regulates the tumor microenvironment. Breast Cancer Research, 2018, 20, 138.	2.2	32
34	Interferon regulatory factor signaling in autoimmune disease. Cytokine, 2017, 98, 15-26.	1.4	27
35	IRF5 genetic risk variants drive myeloid-specific IRF5 hyperactivation and presymptomatic SLE. JCI Insight, 2020, 5, .	2.3	27
36	T Cell-Intrinsic IRF5 Regulates T Cell Signaling, Migration, and Differentiation and Promotes Intestinal Inflammation. Cell Reports, 2020, 31, 107820.	2.9	25

Betsy J Barnes

#	Article	IF	CITATIONS
37	HMGB1-mediated restriction of EPO signaling contributes to anemia of inflammation. Blood, 2022, 139, 3181-3193.	0.6	23
38	Bioinformatics Analysis of the Factors Controlling Type I IFN Gene Expression in Autoimmune Disease and Virus-Induced Immunity. Frontiers in Immunology, 2013, 4, 291.	2.2	19
39	Coordination between innate immune cells, type I IFNs and IRF5 drives SLE pathogenesis. Cytokine, 2020, 132, 154731.	1.4	19
40	Inhibition of IRF5 cellular activity with cell-penetrating peptides that target homodimerization. Science Advances, 2020, 6, eaay1057.	4.7	18
41	Specific detection of interferon regulatory factor 5 (IRF5): A case of antibody inequality. Scientific Reports, 2016, 6, 31002.	1.6	13
42	Genetic Versus Non-genetic Drivers of SLE: Implications of IRF5 Dysregulation in Both Roads Leading to SLE. Current Rheumatology Reports, 2019, 21, 2.	2.1	13
43	B cell transcription factors: Potential new therapeutic targets for SLE. Clinical Immunology, 2014, 152, 140-151.	1.4	12
44	CD4 T Follicular Helper Cells Prevent Depletion of Follicular B Cells in Response to Cecal Ligation and Puncture. Frontiers in Immunology, 2020, 11, 1946.	2.2	12
45	Potential T Cell-Intrinsic Regulatory Roles for IRF5 via Cytokine Modulation in T Helper Subset Differentiation and Function. Frontiers in Immunology, 2020, 11, 1143.	2.2	11
46	<i>Aim2</i> Couples With <i>Ube2i</i> for Sumoylationâ€Mediated Repression of Interferon Signatures in Systemic LupusÂErythematosus. Arthritis and Rheumatology, 2021, 73, 1467-1477.	2.9	10
47	A conserved region within interferon regulatory factor 5 controls breast cancer cell migration through a cytoplasmic and transcription-independent mechanism. Molecular Cancer, 2015, 14, 32.	7.9	8
48	RNAi Transfection Optimized in Primary NaÃ⁻ve B Cells for the Targeted Analysis of Human Plasma Cell Differentiation. Frontiers in Immunology, 2019, 10, 1652.	2.2	5
49	Constitutive expression of IRF-5 in HTLV-1-infected T cells. International Journal of Oncology, 2015, 47, 361-369.	1.4	4
50	Intracellular IRF5 Dimerization Assay. Bio-protocol, 2021, 11, e4021.	0.2	1