Eric T Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8452403/publications.pdf Version: 2024-02-01

257450 276875 8,417 41 24 41 citations h-index g-index papers 48 48 48 12964 all docs docs citations times ranked citing authors

FRICT WANC

#	Article	IF	CITATIONS
1	Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456, 470-476.	27.8	4,508
2	Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nature Methods, 2010, 7, 1009-1015.	19.0	1,224
3	Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins. Cell, 2012, 150, 710-724.	28.9	425
4	Distal Alternative Last Exons Localize mRNAs to Neural Projections. Molecular Cell, 2016, 61, 821-833.	9.7	208
5	Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2060-2065.	7.1	185
6	Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Research, 2015, 25, 858-871.	5.5	159
7	Molecular mechanisms underlying nucleotide repeat expansion disorders. Nature Reviews Molecular Cell Biology, 2021, 22, 589-607.	37.0	151
8	Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics, 2015, 31, 2400-2402.	4.1	142
9	Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nature Communications, 2014, 5, 3603.	12.8	133
10	Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2406-2411.	7.1	116
11	Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Human Molecular Genetics, 2019, 28, 1312-1321.	2.9	104
12	Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9. Molecular Cell, 2017, 68, 479-490.e5.	9.7	99
13	Dysregulation of mRNA Localization and Translation in Genetic Disease. Journal of Neuroscience, 2016, 36, 11418-11426.	3.6	89
14	Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7799-7804.	7.1	86
15	Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Current Opinion in Genetics and Development, 2017, 44, 30-37.	3.3	80
16	Disrupted prenatal RNA processing and myogenesis in congenital myotonic dystrophy. Genes and Development, 2017, 31, 1122-1133.	5.9	80
17	Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation. Skeletal Muscle, 2019, 9, 17.	4.2	80
18	Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy. PLoS Genetics, 2016, 12, e1006316.	3.5	79

Eric T Wang

#	Article	IF	CITATIONS
19	<scp>SCA</scp> 8 <scp>RAN</scp> polySer protein preferentially accumulates in white matter regions and is regulated by <scp>elF</scp> 3F. EMBO Journal, 2018, 37, .	7.8	50
20	Transcriptome alterations in myotonic dystrophy frontal cortex. Cell Reports, 2021, 34, 108634.	6.4	44
21	Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nature Communications, 2021, 12, 6079.	12.8	42
22	Aberrant Myokine Signaling in Congenital Myotonic Dystrophy. Cell Reports, 2017, 21, 1240-1252.	6.4	40
23	Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G ₄ C ₂) Tj ET	Qq1 <u>1</u> 0.78	4314 rgBT (
24	Identification of new branch points and unconventional introns in <i>Saccharomyces cerevisiae</i> . Rna, 2016, 22, 1522-1534.	3.5	32
25	Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAG)n repeat. RNA Biology, 2017, 14, 1374-1388.	3.1	25
26	Sleep disorders in myotonic dystrophies. Muscle and Nerve, 2020, 62, 309-320.	2.2	23
27	Combinatorial Mutagenesis of MBNL1 Zinc Fingers Elucidates Distinct Classes of Regulatory Events. Molecular and Cellular Biology, 2012, 32, 4155-4167.	2.3	22
28	A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20991-21000.	7.1	20
29	A Toxic RNA Catalyzes the Cellular Synthesis of Its Own Inhibitor, Shunting It to Endogenous Decay Pathways. Cell Chemical Biology, 2020, 27, 223-231.e4.	5.2	18
30	Structure-Specific Cleavage of an RNA Repeat Expansion with a Dimeric Small Molecule Is Advantageous over Sequence-Specific Recognition by an Oligonucleotide. ACS Chemical Biology, 2020, 15, 485-493.	3.4	17
31	An engineered RNA binding protein with improved splicing regulation. Nucleic Acids Research, 2018, 46, 3152-3168.	14.5	15
32	Cell-type-specific dysregulation of RNA alternative splicing in short tandem repeat mouse knockin models of myotonic dystrophy. Genes and Development, 2019, 33, 1635-1640.	5.9	14
33	Conservation of context-dependent splicing activity in distant Muscleblind homologs. Nucleic Acids Research, 2016, 44, 8352-8362.	14.5	11
34	Transcriptome-wide organization of subcellular microenvironments revealed by ATLAS-Seq. Nucleic Acids Research, 2020, 48, 5859-5872.	14.5	9
35	High-content image-based analysis and proteomic profiling identifies Tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy. Scientific Reports, 2021, 11, 17029.	3.3	8
36	Repeat length increases disease penetrance and severity in <i>C9orf72</i> ALS/FTD BAC transgenic mice. Human Molecular Genetics, 2021, 29, 3900-3918.	2.9	7

Eric T Wang

#	Article	IF	CITATIONS
37	Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule screening. IScience, 2022, 25, 104198.	4.1	6
38	Mice lacking MBNL1 and MBNL2 exhibit sudden cardiac death and molecular signatures recapitulating myotonic dystrophy. Human Molecular Genetics, 2022, 31, 3144-3160.	2.9	6
39	Automated Intracellular Pharmacological Electrophysiology for Ligand-Gated Ionotropic Receptor and Pharmacology Screening. Molecular Pharmacology, 2021, 100, 73-82.	2.3	4
40	A comprehensive atlas of fetal splicing patterns in the brain of adult myotonic dystrophy type 1 patients. NAR Genomics and Bioinformatics, 2022, 4, lqac016.	3.2	2
41	Goals in tension: motivated by genetic disease yet rooted in basic science. Nature Reviews Molecular Cell Biology, 2021, 22, 581-582.	37.0	0