Yonghua Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8452144/publications.pdf

Version: 2024-02-01

197 20,576 76 137
papers citations h-index g-index

198 198 198 23971 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Metalâ€lon Oligomerization Inside Electrified Carbon Micropores and its Effect on Capacitive Charge Storage. Advanced Materials, 2022, 34, e2107439.	11.1	24
2	An ultrathin solid-state electrolyte film coated on LiNi0.8Co0.1Mn0.1O2 electrode surface for enhanced performance of lithium-ion batteries. Energy Storage Materials, 2022, 45, 1165-1174.	9.5	43
3	CO2-assisted ethane aromatization over zinc and phosphorous modified ZSM-5 catalysts. Applied Catalysis B: Environmental, 2022, 304, 120956.	10.8	21
4	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumorâ€Specific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	109
5	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumorâ€Specific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie, 2022, 134, .	1.6	16
6	CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 306, 121098.	10.8	50
7	Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nature Catalysis, 2022, 5, 212-221.	16.1	113
8	Hybrid MoS _{2+<i>x</i>} Nanosheet/Nanocarbon Heterostructures for Lithium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 5103-5118.	2.4	7
9	Atomically Precise Single Metal Oxide Cluster Catalyst with Oxygenâ€Controlled Activity. Advanced Functional Materials, 2022, 32, .	7.8	13
10	First demonstration of tuning between the Kitaev and Ising limits in a honeycomb lattice. Science Advances, 2022, 8, eabl5671.	4.7	6
11	Saltâ€Assisted 2Hâ€toâ€1T′ Phase Transformation of Transition Metal Dichalcogenides. Advanced Materials, 2022, 34, e2201194.	11.1	19
12	Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 283, 119591.	10.8	116
13	Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Applied Catalysis B: Environmental, 2021, 282, 119551.	10.8	93
14	Molecular engineered palladium single atom catalysts with an M-C ₁ N ₃ subunit for Suzuki coupling. Journal of Materials Chemistry A, 2021, 9, 11427-11432.	5.2	18
15	Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy. Small, 2021, 17, e2007486.	5. 2	94
16	Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Science Advances, 2021, 7, .	4.7	64
17	Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3. Nature Communications, 2021, 12, 1668.	5. 8	30
18	Highly Selective Acetylene Semihydrogenation Catalyst with an Operation Window Exceeding 150 \hat{A}° C. ACS Catalysis, 2021, 11, 6073-6080.	5 . 5	33

#	Article	IF	Citations
19	Coordinatively and Spatially Coconfining High-Loading Atomic Sb in Sulfur-Rich 2D Carbon Matrix for Fast K ⁺ Diffusion and Storage., 2021, 3, 790-798.		10
20	Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nature Communications, 2021, 12, 3992.	5.8	151
21	Understanding the Roles of the Electrode/Electrolyte Interface for Enabling Stable Liâ [¥] Sulfurized Polyacrylonitrile Batteries. ACS Applied Materials & Interfaces, 2021, 13, 31733-31740.	4.0	25
22	Zeroâ€Valent Palladium Singleâ€Atoms Catalysts Confined in Black Phosphorus for Efficient Semiâ€Hydrogenation. Advanced Materials, 2021, 33, e2008471.	11.1	55
23	Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane. Chinese Journal of Catalysis, 2021, 42, 1117-1125.	6.9	39
24	Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373, 315-320.	6.0	179
25	Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nature Communications, 2021, 12, 5770.	5. 8	43
26	Promoting the Oxygen Evolution Activity of Perovskite Nickelates through Phase Engineering. ACS Applied Materials & Interfaces, 2021, 13, 58566-58575.	4.0	30
27	Direct methanation with supported MoS2 nano-flakes: Relationship between structure and activity. Catalysis Today, 2020, 342, 21-31.	2.2	13
28	Bismuth ion battery – A new member in trivalent battery technology. Energy Storage Materials, 2020, 25, 100-104.	9.5	3
29	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy and Environmental Science, 2020, 13, 229-237.	15.6	78
30	\hat{I}^3 -Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. Journal of Catalysis, 2020, 381, 482-492.	3.1	98
31	Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. Journal of the American Chemical Society, 2020, 142, 18971-18980.	6.6	111
32	The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO3 perovskite oxides. Journal of Catalysis, 2020, 390, 1-11.	3.1	32
33	Mesoporous 3D/2D NiCoP/g-C ₃ N ₄ Heterostructure with Dual Co–N and Ni–N Bonding States for Boosting Photocatalytic H ₂ Production Activity and Stability. ACS Sustainable Chemistry and Engineering, 2020, 8, 12934-12943.	3.2	45
34	Multimodal, Multidimensional, and Multiscale X-ray Imaging at the National Synchrotron Light Source II. Synchrotron Radiation News, 2020, 33, 29-36.	0.2	5
35	Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nature Communications, 2020, 11, 4389.	5.8	110
36	Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nature Communications, 2020, 11, 4647.	5.8	117

#	Article	IF	CITATIONS
37	Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nature Catalysis, 2020, 3, 554-563.	16.1	284
38	Rational Design and Synthesis of Hierarchical Porous Mn–N–C Nanoparticles with Atomically Dispersed MnN <i>>sub>x</i> Moieties for Highly Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9367-9376.	3.2	43
39	2D Boron Imidazolate Framework Nanosheets with Electrocatalytic Applications for Oxygen Evolution and Carbon Dioxide Reduction Reaction. Small, 2020, 16, e1907669.	5.2	20
40	Constructing an Adaptive Heterojunction as a Highly Active Catalyst for the Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e2001292.	11.1	122
41	Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H $<$ sub>2 $<$ /sub> O $<$ sub>2 $<$ /sub> production. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6376-6382.	3.3	245
42	Engineering Local and Global Structures of Single Co Atoms for a Superior Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 5862-5870.	5.5	126
43	Dielectric Polarization in Inverse Spinelâ€Structured Mg ₂ TiO ₄ Coating to Suppress Oxygen Evolution of Liâ€Rich Cathode Materials. Advanced Materials, 2020, 32, e2000496.	11.1	134
44	Metal Atomâ€Doped Co ₃ O ₄ Hierarchical Nanoplates for Electrocatalytic Oxygen Evolution. Advanced Materials, 2020, 32, e2002235.	11.1	332
45	Probing the Oxidation/Reduction Dynamics of Fresh and P-, Na-, and K-Contaminated Pt/Pd/Al ₂ O ₃ Diesel Oxidation Catalysts by STEM, TPR, and in Situ XANES. Journal of Physical Chemistry C, 2020, 124, 2945-2952.	1.5	10
46	Ligandâ€Exchangeâ€Induced Amorphization of Pd Nanomaterials for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e1902964.	11.1	164
47	Enhanced Electrocatalytic Hydrogen Evolution Activity in Single-Atom Pt-Decorated VS ₂ Nanosheets. ACS Nano, 2020, 14, 5600-5608.	7.3	135
48	Antiferromagnetic Inverse Spinel Oxide LiCoVO ₄ with Spinâ€Polarized Channels for Water Oxidation. Advanced Materials, 2020, 32, e1907976.	11.1	106
49	Introduction of the Sirepo-Bluesky interface and its application to the optimization problems. , 2020, , .		2
50	Defect-Rich, Candied Haws-Shaped AuPtNi Alloy Nanostructures for Highly Efficient Electrocatalysis. CCS Chemistry, 2020, 2, 24-30.	4.6	23
51	Unraveling the Formation of Amorphous MoS ₂ Nanograins during the Electrochemical Delithiation Process. Advanced Functional Materials, 2019, 29, 1904843.	7.8	38
52	Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nature Catalysis, 2019, 2, 763-772.	16.1	678
53	Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 13532-13539.	7. 2	143
54	Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2019, 131, 13666-13673.	1.6	24

#	Article	lF	CITATIONS
55	A Grapheneâ€Supported Singleâ€Atom FeN ₅ Catalytic Site for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2019, 131, 15013-15018.	1.6	107
56	A Grapheneâ€Supported Singleâ€Atom FeN ₅ Catalytic Site for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 14871-14876.	7.2	410
57	Electronic and Geometric Structures of Rechargeable Lithium Manganese Sulfate Li ₂ Mn(SO ₄) ₂ Cathode. ACS Omega, 2019, 4, 11338-11345.	1.6	2
58	αâ€Ni(OH) ₂ Originated from Electroâ€Oxidation of NiSe ₂ Supported by Carbon Nanoarray on Carbon Cloth for Efficient Water Oxidation. Small, 2019, 15, e1902222.	5.2	18
59	Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation., 2019, 1, 77-84.		50
60	Highly Efficient Multifunctional Co–N–C Electrocatalysts with Synergistic Effects of Co–N Moieties and Co Metallic Nanoparticles Encapsulated in a N-Doped Carbon Matrix for Water-Splitting and Oxygen Redox Reactions. ACS Applied Materials & Diterfaces, 2019, 11, 39809-39819.	4.0	80
61	Confinement-Induced Giant Spin–Orbit-Coupled Magnetic Moment of Co Nanoclusters in TiO ₂ Films. ACS Applied Materials & Interfaces, 2019, 11, 43781-43788.	4.0	8
62	Interfacial Latticeâ€Strainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode. Advanced Materials, 2019, 31, e1906156.	11.1	53
63	Lowering Charge Transfer Barrier of LiMn ₂ O ₄ via Nickel Surface Doping To Enhance Li ⁺ Intercalation Kinetics at Subzero Temperatures. Journal of the American Chemical Society, 2019, 141, 14038-14042.	6.6	125
64	Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catalysis, 2019, 9, 10166-10173.	5. 5	284
65	Boosting Electrochemical CO ₂ Reduction on Metal–Organic Frameworks via Ligand Doping. Angewandte Chemie - International Edition, 2019, 58, 4041-4045.	7.2	199
66	Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Advanced Materials, 2019, 31, e1807898.	11.1	215
67	Highly dispersed nickel catalysts <i>via</i> a facile pyrolysis generated protective carbon layer. Chemical Communications, 2019, 55, 6074-6077.	2.2	29
68	Highly active N,S co-doped hierarchical porous carbon nanospheres from green and template-free method for super capacitors and oxygen reduction reaction. Electrochimica Acta, 2019, 318, 272-280.	2.6	60
69	Interaction of Copper Phthalocyanine with Nitrogen Dioxide and Ammonia Investigation Using X-ray Absorption Spectroscopy and Chemiresistive Gas Measurements. ACS Omega, 2019, 4, 10388-10395.	1.6	27
70	Na ₃ V ₂ (PO ₄) ₃ as the Sole Solid Energy Storage Material for Redox Flow Sodiumâ€lon Battery. Advanced Energy Materials, 2019, 9, 1901188.	10.2	38
71	Origin of electronic structure dependent activity of spinel ZnNixCo2-xO4 oxides for complete methane oxidation. Applied Catalysis B: Environmental, 2019, 256, 117844.	10.8	35
72	Stimulated Electrocatalytic Hydrogen Evolution Activity of MOFâ€Derived MoS ₂ Basal Domains via Charge Injection through Surface Functionalization and Heteroatom Doping. Advanced Science, 2019, 6, 1900140.	5 . 6	73

#	Article	IF	Citations
73	Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25147-25154.	4.0	152
74	Guided Assembly of Microporous/Mesoporous Manganese Phosphates by Bifunctional Organophosphonic Acid Etching and Templating. Advanced Materials, 2019, 31, e1901124.	11.1	15
75	Aurophilic Interactions in the Selfâ€Assembly of Gold Nanoclusters into Nanoribbons with Enhanced Luminescence. Angewandte Chemie, 2019, 131, 8223-8228.	1.6	29
76	Nitrogen-Doped Cobalt Phosphide for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17359-17367.	4.0	40
77	Local Ca-structure variation and microstructural characteristics on one-part activated slag system with various activators. Cement and Concrete Composites, 2019, 102, 1-13.	4.6	11
78	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. Angewandte Chemie, 2019, 131, 6103-6108.	1.6	69
79	Molecular-level design of Fe-N-C catalysts derived from Fe-dual pyridine coordination complexes for highly efficient oxygen reduction. Journal of Catalysis, 2019, 372, 245-257.	3.1	56
80	Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 2019, 4, 329-338.	19.8	977
81	Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe ³⁺ in aqueous solution. Chemical Communications, 2019, 55, 4727-4730.	2.2	61
82	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. Angewandte Chemie - International Edition, 2019, 58, 6042-6047.	7.2	226
83	Aurophilic Interactions in the Selfâ€Assembly of Gold Nanoclusters into Nanoribbons with Enhanced Luminescence. Angewandte Chemie - International Edition, 2019, 58, 8139-8144.	7.2	185
84	Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nature Communications, 2019, 10, 572.	5.8	254
85	A Flexible Microwave Shield with Tunable Frequencyâ€Transmission and Electromagnetic Compatibility. Advanced Functional Materials, 2019, 29, 1900163.	7.8	299
86	Defect Engineering of Oxygenâ€Deficient Manganese Oxide to Achieve Highâ€Performing Aqueous Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1803815.	10.2	504
87	Redox Targeting-Based Vanadium Redox-Flow Battery. ACS Energy Letters, 2019, 4, 3028-3035.	8.8	63
88	Expedient synthesis of $\langle i \rangle E \langle i \rangle$ -hydrazone esters and $1 \langle i \rangle H \langle i \rangle$ -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537.	4.7	31
89	Tuning the Electronic Structure of NiO via Li Doping for the Fast Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 419-428.	3.2	78
90	High-Magnetization Tetragonal Ferrite-Based Films Induced by Carbon and Oxygen Vacancy Pairs. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1049-1056.	4.0	5

#	Article	IF	Citations
91	Promoted Glycerol Oxidation Reaction in an Interfaceâ€Confined Hierarchically Structured Catalyst. Advanced Materials, 2019, 31, e1804763.	11.1	40
92	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 3521-3526.	7.2	62
93	2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Applied Catalysis B: Environmental, 2019, 243, 678-685.	10.8	116
94	In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 3769-3773.	7.2	188
95	Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition Metal Oxides. CheM, 2019, 5, 376-389.	5.8	171
96	In situ depth-resolved synchrotron radiation X-ray spectroscopy study of radiation-induced Au deposition. Journal of Synchrotron Radiation, 2019, 26, 1940-1944.	1.0	1
97	Annealing effect on the ferromagnetism of MoS2 nanoparticles. Journal of Alloys and Compounds, 2018, 746, 399-404.	2.8	27
98	Transitionâ€Metalâ€Doped αâ€MnO ₂ Nanorods as Bifunctional Catalysts for Efficient Oxygen Reduction and Evolution Reactions. ChemistrySelect, 2018, 3, 2613-2622.	0.7	54
99	Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Applied Catalysis B: Environmental, 2018, 230, 220-236.	10.8	370
100	Operando Investigation of Mn ₃ O _{4+Î} Co-catalyst on Fe ₂ O ₃ Photoanode: Manganese-Valency-Determined Enhancement at Varied Potentials. ACS Applied Energy Materials, 2018, 1, 814-821.	2.5	21
101	Superexchange Effects on Oxygen Reduction Activity of Edgeâ€Sharing [Co <i></i> O ₆] Octahedra in Spinel Oxide. Advanced Materials, 2018, 30, 1705407.	11.1	142
102	Enhanced Catalysis of the Electrochemical Oxygen Evolution Reaction by Iron(III) Ions Adsorbed on Amorphous Cobalt Oxide. ACS Catalysis, 2018, 8, 807-814.	5.5	163
103	Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film. Nano Letters, 2018, 18, 482-490.	4.5	105
104	Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.	11.1	341
105	Cobalt Boron Imidazolate Framework Derived Cobalt Nanoparticles Encapsulated in B/N Codoped Nanocarbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1801136.	7.8	155
106	Heteroatomic Znâ€MWW Zeolite Developed for Catalytic Dehydrogenation Reactions: A Combined Experimental and DFT Study. ChemCatChem, 2018, 10, 3078-3085.	1.8	8
107	High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.	6.6	757
108	Spinel Manganese Ferrites for Oxygen Electrocatalysis: Effect of Mn Valency and Occupation Site. Electrocatalysis, 2018, 9, 287-292.	1.5	38

#	Article	IF	Citations
109	A Highly Efficient Oxygen Evolution Catalyst Consisting of Interconnected Nickel–Iron‣ayered Double Hydroxide and Carbon Nanodomains. Advanced Materials, 2018, 30, 1705106.	11.1	209
110	Revealing the Dominant Chemistry for Oxygen Reduction Reaction on Small Oxide Nanoparticles. ACS Catalysis, 2018, 8, 673-677.	5 . 5	58
111	Activation of the MoSe ₂ basal plane and Se-edge by B doping for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 510-515.	5.2	110
112	Elucidation of thermally induced internal porosity in zinc oxide nanorods. Nano Research, 2018, 11, 2412-2423.	5.8	10
113	Mussel-inspired facile synthesis of Fe/Co-polydopamine complex nanospheres: complexation mechanism and application of the carbonized hybrid nanospheres as an efficient bifunctional electrocatalyst. New Journal of Chemistry, 2018, 42, 19494-19504.	1.4	6
114	Câ^'O Hydrogenolysis of Tetrahydrofurfuryl Alcohol to 1,5â€Pentanediol Over Biâ€functional Nickelâ€Tungsten Catalysts. ChemCatChem, 2018, 10, 4652-4664.	1.8	28
115	Vanadium-embedded mesoporous carbon microspheres as effective catalysts for selective aerobic oxidation of 5-hydroxymethyl-2-furfural into 2, 5-diformylfuran. Applied Catalysis A: General, 2018, 568, 16-22.	2.2	46
116	Identification of Facetâ€Governing Reactivity in Hematite for Oxygen Evolution. Advanced Materials, 2018, 30, e1804341.	11.1	96
117	Spectroscopic Characterization and Mechanistic Studies on Visible Light Photoredox Carbon–Carbon Bond Formation by Bis(arylimino)acenaphthene Copper Photosensitizers. ACS Catalysis, 2018, 8, 11277-11286.	5 . 5	42
118	Ultra-high surface area graphitic Fe-N-C nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions. Journal of Catalysis, 2018, 368, 279-290.	3.1	105
119	Metal–Oxygen Hybridization Determined Activity in Spinel-Based Oxygen Evolution Catalysts: A Case Study of ZnFe _{2–<i>x</i>} Cr _{<i>x</i>} O ₄ . Chemistry of Materials, 2018, 30, 6839-6848.	3.2	65
120	Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis. Journal of the American Chemical Society, 2018, 140, 13644-13653.	6.6	430
121	Hydrazone-based covalent organic frameworks for Lewis acid catalysis. Dalton Transactions, 2018, 47, 13824-13829.	1.6	39
122	Hybrid Nanomaterials with Single-Site Catalysts by Spatially Controllable Immobilization of Nickel Complexes <i>via</i> Photoclick Chemistry for Alkene Epoxidation. ACS Nano, 2018, 12, 5903-5912.	7.3	16
123	Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nature Catalysis, 2018, 1, 460-468.	16.1	247
124	Electronic and Defective Engineering of Electrospun CaMnO ₃ Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1800612.	10.2	234
125	An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts. Nano Energy, 2018, 50, 273-280.	8.2	89
126	Identifying the Origin and Contribution of Surface Storage in TiO ₂ (B) Nanotube Electrode by In Situ Dynamic Valence State Monitoring. Advanced Materials, 2018, 30, e1802200.	11.1	90

#	Article	IF	CITATIONS
127	Host–Guest and Photophysical Behavior of Ti ₈ L ₁₂ Cube with Encapsulated [Ti(H ₂ O) ₆] Species. Chemistry - A European Journal, 2018, 24, 14358-14362.	1.7	24
128	Enlarged CoO Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction. Advanced Materials, 2018, 30, e1802912.	11.1	338
129	Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO ₂ Reduction to CH ₄ . ACS Catalysis, 2018, 8, 7113-7119.	5.5	486
130	Engineering Sulfur Defects, Atomic Thickness, and Porous Structures into Cobalt Sulfide Nanosheets for Efficient Electrocatalytic Alkaline Hydrogen Evolution. ACS Catalysis, 2018, 8, 8077-8083.	5.5	219
131	Redox-targeted catalysis for vanadium redox-flow batteries. Nano Energy, 2018, 52, 292-299.	8.2	43
132	Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism. Nature Communications, 2018, 9, 2931.	5.8	66
133	Identifying Influential Parameters of Octahedrally Coordinated Cations in Spinel ZnMn _{<i>x</i>} Co _{2â€"<i>x</i>} O ₄ Oxides for the Oxidation Reaction. ACS Catalysis, 2018, 8, 8568-8577.	5.5	68
134	Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nature Communications, 2018, 9, 3197.	5.8	146
135	Preparation of 1T′-Phase ReS _{2<i>x</i>} Se _{2(1-<i>x</i>)} (<i>x</i> = 0–1) Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 8563-8568.	6.6	104
136	Degree of Geometric Tilting Determines the Activity of FeO ₆ Octahedra for Water Oxidation. Chemistry of Materials, 2018, 30, 4313-4320.	3.2	54
137	Crystal Phase and Architecture Engineering of Lotusâ€Thalamusâ€Shaped Ptâ€Ni Anisotropic Superstructures for Highly Efficient Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1801741.	11.1	163
138	Intrinsic or Interface Clustering-Induced Ferromagnetism in Fe-Doped In ₂ O ₃ -Diluted Magnetic Semiconductors. ACS Applied Materials & Semiconductors. ACS	4.0	23
139	Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline. Electrochimica Acta, 2017, 228, 183-194.	2.6	45
140	Improved Reversibility of Fe ³⁺ /Fe ⁴⁺ Redox Couple in Sodium Super Ion Conductor Type Na ₃ Fe ₂ (PO ₄) ₃ for Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605694.	11.1	169
141	Origin of Magnetism in Hydrothermally Aged 2-Line Ferrihydrite Suspensions. Environmental Science & En	4.6	16
142	On the synthesis and performance of hierarchical nanoporous TS-1 catalysts. Microporous and Mesoporous Materials, 2017, 244, 83-92.	2.2	29
143	Spatial imaging and speciation of Cu in rice (Oryza sativa L.) roots using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy. Chemosphere, 2017, 175, 356-364.	4.2	44
144	Enhanced oxygen evolution reaction by Co-O-C bonds in rationally designed Co3O4/graphene nanocomposites. Nano Energy, 2017, 33, 445-452.	8.2	131

#	Article	IF	Citations
145	Activating and Optimizing Activity of CoS ₂ for Hydrogen Evolution Reaction through the Synergic Effect of N Dopants and S Vacancies. ACS Energy Letters, 2017, 2, 1022-1028.	8.8	229
146	Unleashing the Power and Energy of LiFePO ₄ -Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator. Journal of the American Chemical Society, 2017, 139, 6286-6289.	6.6	70
147	$\langle i \rangle$ Al-BL $\langle i \rangle$ 1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm. Journal of Synchrotron Radiation, 2017, 24, 367-373.	1.0	2
148	Unique PCoN Surface Bonding States Constructed on gâ€C ₃ N ₄ Nanosheets for Drastically Enhanced Photocatalytic Activity of H ₂ Evolution. Advanced Functional Materials, 2017, 27, 1604328.	7.8	329
149	Lanthanum oxycarbonate modified Cu/Al ₂ O ₃ catalysts for selective hydrogenolysis of glucose to propylene glycol: base site requirements. Catalysis Science and Technology, 2017, 7, 4680-4690.	2.1	22
150	Ex situ XAS investigation of effect of binders on electrochemical performance of Li ₂ Fe(SO ₄) ₂ cathode. Journal of Materials Chemistry A, 2017, 5, 19963-19971.	5.2	4
151	Directly synthesized V-containing BEA zeolite: Acid-oxidation bifunctional catalyst enhancing C-alkylation selectivity in liquid-phase methylation of phenol. Chemical Engineering Journal, 2017, 328, 1031-1042.	6.6	25
152	Phosphonate-Based Metal–Organic Framework Derived Co–P–C Hybrid as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 6000-6007.	5.5	149
153	Tailoring the Co 3d-O 2p Covalency in LaCoO ₃ by Fe Substitution To Promote Oxygen Evolution Reaction. Chemistry of Materials, 2017, 29, 10534-10541.	3.2	254
154	Encapsulating porous SnO ₂ into a hybrid nanocarbon matrix for long lifetime Li storage. Journal of Materials Chemistry A, 2017, 5, 25609-25617.	5.2	57
155	Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites. Catalysis Science and Technology, 2017, 7, 6101-6111.	2.1	26
156	The role of metal–support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh–Fe catalysts. Physical Chemistry Chemical Physics, 2017, 19, 4199-4207.	1.3	25
157	Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation, 2017, 24, 1000-1005.	1.0	11
158	Anion vacancy-mediated ferromagnetism in atomic-thick Ni3N nanosheets. Applied Physics Letters, 2017, $111, \ldots$	1.5	11
159	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy and Environmental Science, 2016, 9, 2563-2570.	15.6	216
160	Unravelling the anomalous electrical and optical phase-change characteristics in FeTe. Acta Materialia, 2016, 112, 67-76.	3.8	16
161	Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. ACS Catalysis, 2016, 6, 7865-7871.	5.5	51
162	One-Pot Synthesis of Fe(III)–Polydopamine Complex Nanospheres: Morphological Evolution, Mechanism, and Application of the Carbonized Hybrid Nanospheres in Catalysis and Zn–Air Battery. Langmuir, 2016, 32, 9265-9275.	1.6	78

#	Article	IF	CITATIONS
163	Intrinsic Ferromagnetism in the Diluted Magnetic Semiconductor <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Co</mml:mi><mml:mo><mml:msub><mml:mrow><mml:mi 117,="" 2016,="" 227202.<="" letters,="" physical="" review="" td=""><td>>TiO²/mr</td><td>ıl:mi></td></mml:mi></mml:mrow></mml:msub></mml:mo></mml:mrow></mml:math>	>TiO ² /mr	ıl:mi>
164	Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20185-20191.	4.0	40
165	One-pot synthesis of polydopamine–Zn complex antifouling coatings on membranes for ultrafiltration under harsh conditions. RSC Advances, 2016, 6, 103390-103398.	1.7	26
166	Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Applied Catalysis A: General, 2016, 521, 83-89.	2.2	70
167	High-performance NaFePO ₄ formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4882-4892.	5.2	129
168	<i>In Situ</i> Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of Cu ^{III} Oxides as Catalytically Active Species. ACS Catalysis, 2016, 6, 2473-2481.	5. 5	592
169	Highly efficient rutile TiO ₂ photocatalysts with single Cu(<scp>ii</scp>) and Fe(<scp>iii</scp>) surface catalytic sites. Journal of Materials Chemistry A, 2016, 4, 3127-3138.	5.2	73
170	A Stepâ€byâ€Step Assembly of a 3D Coordination Polymer in the Solidâ€State by Desolvation and [2+2] Cycloaddition Reactions. Chemistry - A European Journal, 2015, 21, 11948-11953.	1.7	26
171	Frontispiece: A Step-by-Step Assembly of a 3D Coordination Polymer in the Solid-State by Desolvation and [2+2] Cycloaddition Reactions. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	0
172	High-temperature water–gas shift reaction over Ni/xK/CeO2 catalysts: Suppression of methanation via formation of bridging carbonyls. Journal of Catalysis, 2015, 329, 130-143.	3.1	87
173	Bifunctional Mo3VOx/H4SiW12O40/Al2O3 catalysts for one-step conversion of glycerol to acrylic acid: Catalyst structural evolution and reaction pathways. Applied Catalysis B: Environmental, 2015, 174-175, 1-12.	10.8	17
174	Facile synthesis of copper nanoparticles in glycerol at room temperature: formation mechanism. RSC Advances, 2015, 5, 24544-24549.	1.7	40
175	\hat{l}^2 -FeOOH: An Earth-Abundant High-Capacity Negative Electrode Material for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 5340-5348.	3.2	57
176	XAFCA: a new XAFS beamline for catalysis research. Journal of Synchrotron Radiation, 2015, 22, 839-843.	1.0	125
177	General method for automatic on-line beamline optimization based on genetic algorithm. Journal of Synchrotron Radiation, 2015, 22, 661-665.	1.0	5
178	Highly dispersed supported metal catalysts prepared via in-situ self-assembled core-shell precursor route. International Journal of Hydrogen Energy, 2015, 40, 13388-13398.	3.8	19
179	Metal–organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 20607-20613.	5.2	57
180	Fe2O3 Nanoparticle/SWCNT Composite Electrode for Sensitive Electrocatalytic Oxidation of Hydroquinone. Electrochimica Acta, 2015, 180, 1059-1067.	2.6	43

#	Article	IF	Citations
181	Superior Lithium Storage Properties of βâ€FeOOH. Advanced Energy Materials, 2015, 5, 1401517.	10.2	56
182	Supported H4SiW12O40/Al2O3 solid acid catalysts for dehydration of glycerol to acrolein: Evolution of catalyst structure and performance with calcination temperature. Applied Catalysis A: General, 2015, 489, 32-41.	2.2	56
183	Bimetallic Ni–Cu catalyst supported on CeO2 for high-temperature water–gas shift reaction: Methane suppression via enhanced CO adsorption. Journal of Catalysis, 2014, 314, 32-46.	3.1	268
184	Disruption of Putrescine Biosynthesis in Shewanella oneidensis Enhances Biofilm Cohesiveness and Performance in Cr(VI) Immobilization. Applied and Environmental Microbiology, 2014, 80, 1498-1506.	1.4	101
185	Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale, 2014, 6, 13854-13860.	2.8	76
186	Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence. Plant Physiology and Biochemistry, 2014, 84, 224-232.	2.8	30
187	Rh–Fe/Ca–Al2O3: A Unique Catalyst for CO-Free Hydrogen Production in Low Temperature Ethanol Steam Reforming. Topics in Catalysis, 2014, 57, 627-636.	1.3	10
188	Data analysis method to achieve sub-10â€pm spatialÂresolution using extended X-ray absorption fine-structure spectroscopy. Journal of Synchrotron Radiation, 2014, 21, 756-761.	1.0	11
189	Post-synthesis modification of a metal–organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy and Environmental Science, 2013, 6, 3229.	15.6	336
190	The structure of Mn-doped tris(8-hydroxyquinoline)gallium by extended x-ray absorption fine structure spectroscopy and first principles calculations. Journal of Applied Physics, 2012, 112, 113519.	1.1	5
191	Thickness-dependent twinning evolution and ferroelectric behavior of epitaxial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>BiFeO</mml:mtext></mml:mrow><mml:mn .<="" 2010,="" 82,="" b,="" films.="" physical="" review="" th="" thin=""><th>>¹3¹/mml:</th><th>32 mn></th></mml:mn></mml:msub></mml:mrow></mml:math>	> ¹ 3 ¹ /mml:	32 mn>
192	Spatial Imaging and Speciation of Lead in the Accumulator Plant <i>Sedum alfredii</i> by Microscopically Focused Synchrotron X-ray Investigation. Environmental Science & Envi	4.6	89
193	A new cell for X-ray absorption spectroscopy study under high pressure. Chinese Physics C, 2009, 33, 701-705.	1.5	3
194	Projected gradient methods for synchrotron radiation spectra distribution function reconstruction. Inverse Problems in Science and Engineering, 2009, 17, 175-186.	1.2	2
195	Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study. Journal of Colloid and Interface Science, 2007, 314, 427-433.	5.0	86
196	On projected gradient methods for regularizing reconstruction of synchrotron radiation spectra distribution function. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1061901-1061902.	0.2	0
197	Measurement of synchrotron radiation spectra using combined attenuation method and regularized inversion. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 565, 855-860.	0.7	8