List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8451909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 2019, 363, .	12.6	479
2	DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome, 2018, 6, 23.	11.1	462
3	Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses. Environmental Science & Technology, 2010, 44, 7749-7755.	10.0	401
4	Monochloramine Decay in Model and Distribution System Waters. Water Research, 2001, 35, 1766-1776.	11.3	270
5	Formation of Chloroform and Chlorinated Organics by Free-Chlorine-Mediated Oxidation of Triclosan. Environmental Science & Technology, 2005, 39, 3176-3185.	10.0	265
6	Nanomaterial Enabled Biosensors for Pathogen Monitoring - A Review. Environmental Science & Technology, 2010, 44, 3656-3669.	10.0	246
7	Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environmental Science & Technology, 2017, 51, 13061-13069.	10.0	236
8	Environmental science and engineering applications of nanocellulose-based nanocomposites. Environmental Science: Nano, 2014, 1, 302-316.	4.3	233
9	Plasmonic colorimetric and SERS sensors for environmental analysis. Environmental Science: Nano, 2015, 2, 120-135.	4.3	216
10	Longevity of Granular Iron in Groundwater Treatment Processes:Â Solution Composition Effects on Reduction of Organohalides and Nitroaromatic Compounds. Environmental Science & Technology, 2003, 37, 1208-1218.	10.0	196
11	Nanosensors for water quality monitoring. Nature Nanotechnology, 2018, 13, 651-660.	31.5	187
12	Fractionating Nanosilver: Importance for Determining Toxicity to Aquatic Test Organisms. Environmental Science & Technology, 2010, 44, 9571-9577.	10.0	163
13	Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. ELife, 2021, 10, .	6.0	158
14	Effects of Oxidation on the Magnetization of Nanoparticulate Magnetite. Langmuir, 2010, 26, 16745-16753.	3.5	145
15	Aerosol microdroplets exhibit a stable pH gradient. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7272-7277.	7.1	142
16	Differential Drivers of Antimicrobial Resistance across the World. Accounts of Chemical Research, 2019, 52, 916-924.	15.6	142
17	Particle Size and Aggregation Effects on Magnetite Reactivity toward Carbon Tetrachloride. Environmental Science & Technology, 2007, 41, 5277-5283.	10.0	141
18	Longevity of Granular Iron in Groundwater Treatment Processes:Â Corrosion Product Development. Environmental Science & Technology, 2005, 39, 2867-2879.	10.0	140

#	Article	IF	CITATIONS
19	Formation of Chloroform and Other Chlorinated Byproducts by Chlorination of Triclosan-Containing Antibacterial Products. Environmental Science & Technology, 2007, 41, 2387-2394.	10.0	139
20	Effect of wastewater colloids on membrane removal of antibiotic resistance genes. Water Research, 2013, 47, 130-140.	11.3	134
21	C60 Colloid Formation in Aqueous Systems: Effects of Preparation Method on Size, Structure, and Surface Charge. Environmental Science & Technology, 2008, 42, 173-178.	10.0	131
22	Nanomaterial enabled sensors for environmental contaminants. Journal of Nanobiotechnology, 2018, 16, 95.	9.1	131
23	Dioxin Photoproducts of Triclosan and Its Chlorinated Derivatives in Sediment Cores. Environmental Science & Technology, 2010, 44, 4545-4551.	10.0	130
24	Controlled Evaluation of Silver Nanoparticle Dissolution Using Atomic Force Microscopy. Environmental Science & Technology, 2012, 46, 6977-6984.	10.0	126
25	Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzoâ€ <i>P</i> â€dioxins. Environmental Toxicology and Chemistry, 2009, 28, 2555-2563.	4.3	120
26	Controlled Evaluation of Silver Nanoparticle Sulfidation in a Full-Scale Wastewater Treatment Plant. Environmental Science & Technology, 2014, 48, 8564-8572.	10.0	112
27	Effect of Natural Organic Matter on Monochloramine Decomposition:Â Pathway Elucidation through the Use of Mass and Redox Balances. Environmental Science & Technology, 1998, 32, 1409-1416.	10.0	101
28	Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity. Environmental Science & Technology, 2009, 43, 4169-4174.	10.0	91
29	Room temperature seed mediated growth of gold nanoparticles: mechanistic investigations and life cycle assesment. Environmental Science: Nano, 2015, 2, 440-453.	4.3	86
30	Aggregation and sedimentation of magnetite nanoparticle clusters. Environmental Science: Nano, 2016, 3, 567-577.	4.3	81
31	Surface-Enhanced Resonance Raman Spectroscopy for the Rapid Detection of Cryptosporidium parvum and Giardia lamblia. Environmental Science & Technology, 2009, 43, 1147-1152.	10.0	80
32	Lead Toxicity to the Performance, Viability, And Community Composition of Activated Sludge Microorganisms. Environmental Science & Technology, 2015, 49, 824-830.	10.0	80
33	Effect of Silver Nanoparticles and Antibiotics on Antibiotic Resistance Genes in Anaerobic Digestion. Water Environment Research, 2013, 85, 411-421.	2.7	78
34	Preparation and evaluation of nanocellulose–gold nanoparticle nanocomposites for SERS applications. Analyst, The, 2015, 140, 5640-5649.	3.5	78
35	Longevity of granular iron in groundwater treatment processes: changes in solute transport properties over time. Journal of Contaminant Hydrology, 2003, 64, 3-33.	3.3	74
36	Iron Oxide Surface-Catalyzed Oxidation of Ferrous Iron by Monochloramine:Â Implications of Oxide Type and Carbonate on Reactivity. Environmental Science & Technology, 2002, 36, 512-519.	10.0	73

#	Article	IF	CITATIONS
37	Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. Environmental Science & Technology, 2017, 51, 7759-7774.	10.0	72
38	NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes. Microbiome, 2019, 7, 88.	11.1	72
39	Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Research, 2015, 68, 87-97.	11.3	70
40	Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight. Journal of Hazardous Materials, 2013, 262, 456-463.	12.4	68
41	Filter-Feeding Bivalves Store and Biodeposit Colloidally Stable Gold Nanoparticles. Environmental Science & Technology, 2011, 45, 6592-6599.	10.0	65
42	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	4.3	65
43	Surface-Enhanced Raman Spectroscopy (SERS) Cellular Imaging of Intracellulary Biosynthesized Gold Nanoparticles. ACS Sustainable Chemistry and Engineering, 2014, 2, 1599-1608.	6.7	64
44	Reaction Pathways Involved in the Reduction of Monochloramine by Ferrous Iron. Environmental Science & Technology, 2000, 34, 83-90.	10.0	63
45	Next generation sequencing approaches to evaluate water and wastewater quality. Water Research, 2021, 194, 116907.	11.3	62
46	Gold Nanoparticle Toxicity in Mice and Rats: Species Differences. Toxicologic Pathology, 2018, 46, 431-443.	1.8	60
47	Halogenation of Bisphenol-A, Triclosan, and Phenols in Chlorinated Waters Containing Iodide. Environmental Science & Technology, 2013, 47, 6764-6772.	10.0	59
48	Controlled Evaluation of the Impacts of Surface Coatings on Silver Nanoparticle Dissolution Rates. Environmental Science & Technology, 2018, 52, 2726-2734.	10.0	56
49	Improved Quantitative SERS Enabled by Surface Plasmon Enhanced Elastic Light Scattering. Analytical Chemistry, 2018, 90, 3227-3237.	6.5	56
50	Dissolution and Persistence of Copper-Based Nanomaterials in Undersaturated Solutions with Respect to Cupric Solid Phases. Environmental Science & Technology, 2016, 50, 6772-6781.	10.0	55
51	Highly stable SERS pH nanoprobes produced by co-solvent controlled AuNP aggregation. Analyst, The, 2016, 141, 5159-5169.	3.5	54
52	Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes. Scientific Reports, 2021, 11, 3753.	3.3	53
53	Seizing the moment: now is the time for integrated global surveillance of antimicrobial resistance in wastewater environments. Current Opinion in Microbiology, 2021, 64, 91-99.	5.1	53
54	Triclosan Reactivity in Chloraminated Waters. Environmental Science & Technology, 2006, 40, 2615-2622.	10.0	52

#	Article	IF	CITATIONS
55	Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge. Microbiome, 2022, 10, 20.	11.1	52
56	Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design. Nature Nanotechnology, 2018, 13, 253-259.	31.5	51
57	Life Cycle Assessment of "Green―Nanoparticle Synthesis Methods. Environmental Engineering Science, 2014, 31, 410-420.	1.6	50
58	Unraveling the riverine antibiotic resistome: The downstream fate of anthropogenic inputs. Water Research, 2021, 197, 117050.	11.3	50
59	Drop Coating Deposition Raman (DCDR) for Microcystin-LR Identification and Quantitation. Environmental Science & Technology, 2011, 45, 5644-5651.	10.0	48
60	pH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform. Scientific Reports, 2015, 5, 18131.	3.3	47
61	Surface-Enhanced Raman Scattering Based Microfluidics for Single-Cell Analysis. Analytical Chemistry, 2018, 90, 12004-12010.	6.5	47
62	An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance. Environmental Engineering Science, 2018, 35, 1005-1011.	1.6	47
63	Waste not want not: life cycle implications of gold recovery and recycling from nanowaste. Environmental Science: Nano, 2016, 3, 1133-1143.	4.3	46
64	Evaluation of Metagenomic-Enabled Antibiotic Resistance Surveillance at a Conventional Wastewater Treatment Plant. Frontiers in Microbiology, 2021, 12, 657954.	3.5	46
65	UV–vis Spectroscopic Properties of <i>n</i> C ₆₀ Produced via Extended Mixing. Environmental Science & Technology, 2011, 45, 9967-9974.	10.0	45
66	Moving beyond Mass: The Unmet Need to Consider Dose Metrics in Environmental Nanotoxicology Studies. Environmental Science & Technology, 2012, 46, 10881-10882.	10.0	45
67	Effects of Bulk Water Chemistry on Autogenous Healing of Concrete. Journal of Materials in Civil Engineering, 2010, 22, 515-524.	2.9	44
68	Data Analytics for Environmental Science and Engineering Research. Environmental Science & Technology, 2021, 55, 10895-10907.	10.0	44
69	Towards a harmonized method for the global reconnaissance of multi-class antimicrobials and other pharmaceuticals in wastewater and receiving surface waters. Environment International, 2019, 124, 361-369.	10.0	42
70	Degradation of extracellular genomic, plasmid DNA and specific antibiotic resistance genes by chlorination. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	42
71	Cold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst, The, 2010, 135, 1320.	3.5	38
72	Differentiation of Microcystin, Nodularin, and Their Component Amino Acids by Drop-Coating Deposition Raman Spectroscopy. Analytical Chemistry, 2011, 83, 9273-9280.	6.5	38

#	Article	IF	CITATIONS
73	Real-Time Monitoring of Ligand Exchange Kinetics on Gold Nanoparticle Surfaces Enabled by Hot Spot-Normalized Surface-Enhanced Raman Scattering. Environmental Science & Technology, 2019, 53, 575-585.	10.0	38

Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus) Tj ETQq0 0 0 rgBT /Overlock $\frac{10}{4.0}$ Tf 50 702 Td (galler 37 Td (galler 37 Td))

75	Facile, tunable, and SERS-enhanced HEPES gold nanostars. RSC Advances, 2016, 6, 29669-29673.	3.6	37
76	ARGminer: a web platform for the crowdsourcing-based curation of antibiotic resistance genes. Bioinformatics, 2020, 36, 2966-2973.	4.1	37
77	Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media. Water Research, 2016, 99, 7-15.	11.3	36
78	Biodegradation of nanocrystalline cellulose by two environmentally-relevant consortia Water Research, 2016, 104, 137-146.	11.3	36
79	Lectin-Modified Bacterial Cellulose Nanocrystals Decorated with Au Nanoparticles for Selective Detection of Bacteria Using Surface-Enhanced Raman Scattering Coupled with Machine Learning. ACS Applied Nano Materials, 2022, 5, 259-268.	5.0	36
80	Modeling the Kinetics of Ferrous Iron Oxidation by Monochloramine. Environmental Science & Technology, 2002, 36, 662-668.	10.0	35
81	Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. Sensing and Bio-Sensing Research, 2016, 8, 47-54.	4.2	35
82	Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm. Microbiome, 2019, 7, 123.	11.1	35
83	Plasmonic Electronic Raman Scattering as Internal Standard for Spatial and Temporal Calibration in Quantitative Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 9543-9551.	4.6	35
84	Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance. Environmental Science: Water Research and Technology, 2021, 7, 1545-1551.	2.4	34
85	Effects of sample preservation and DNA extraction on enumeration of antibiotic resistance genes in wastewater. FEMS Microbiology Ecology, 2018, 94, .	2.7	33
86	Effectiveness of switching disinfectants for nitrification control. Journal - American Water Works Association, 2008, 100, 104-115.	0.3	32
87	Effects of carboxylic acids on nC60 aggregate formation. Environmental Pollution, 2009, 157, 1072-1080.	7.5	32
88	Sulfate-Mediated End-to-End Assembly of Gold Nanorods. Langmuir, 2017, 33, 1486-1495.	3.5	31
89	Quantitative SERS by hot spot normalization – surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance. Faraday Discussions, 2017, 205, 491-504.	3.2	31
90	Nanoclustered Gold Honeycombs for Surface-Enhanced Raman Scattering. Analytical Chemistry, 2013, 85, 1342-1349.	6.5	30

#	Article	IF	CITATIONS
91	Discriminatory Detection of ssDNA by Surface-Enhanced Raman Spectroscopy (SERS) and Tree-Based Support Vector Machine (Tr-SVM). Analytical Chemistry, 2021, 93, 9319-9328.	6.5	30
92	Protein-aided formation of triangular silver nanoprisms with enhanced SERS performance. Journal of Materials Chemistry B, 2016, 4, 4182-4190.	5.8	29
93	Surfaceâ€Enhanced Raman Spectroscopy Characterization of Saltâ€Induced Aggregation of Gold Nanoparticles. ChemPhysChem, 2018, 19, 24-28.	2.1	28
94	Demonstrating a Comprehensive Wastewater-Based Surveillance Approach That Differentiates Globally Sourced Resistomes. Environmental Science & Technology, 2022, 56, 14982-14993.	10.0	27
95	MGITC Facilitated Formation of AuNP Multimers. Langmuir, 2014, 30, 8342-8349.	3.5	24
96	Demonstrating an Integrated Antibiotic Resistance Gene Surveillance Approach in Puerto Rican Watersheds Post-Hurricane Maria. Environmental Science & Technology, 2020, 54, 15108-15119.	10.0	24
97	Applications of surface analysis in the environmental sciences: dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces. Analytica Chimica Acta, 2003, 496, 301-313.	5.4	23
98	Raman Characterization of Nanoparticle Transport in Microfluidic Paper-Based Analytical Devices (μPADs). ACS Applied Materials & Interfaces, 2015, 7, 9139-9146.	8.0	23
99	Uncontrolled Variability in the Extinction Spectra of C ₆₀ Nanoparticle Suspensions. Langmuir, 2013, 29, 9685-9693.	3.5	20
100	Increased coverage and high confidence in suspect screening of emerging contaminants in global environmental samples. Journal of Hazardous Materials, 2021, 414, 125369.	12.4	20
101	Enhanced disinfection by-product formation due to nanoparticles in wastewater treatment plant effluents. Environmental Science: Water Research and Technology, 2015, 1, 823-831.	2.4	19
102	Surface-Enhanced Raman Spectroscopy of Bacterial Metabolites for Bacterial Growth Monitoring and Diagnosis of Viral Infection. Environmental Science & Technology, 2021, 55, 9119-9128.	10.0	19
103	Implications of the Coffee-Ring Effect on Virus Infectivity. Langmuir, 2021, 37, 11260-11268.	3.5	18
104	Direct Quantification of the Effect of Ammonium on Aerosol Droplet pH. Environmental Science & Technology, 2021, 55, 778-787.	10.0	17
105	Modeling the Decomposition of Disinfecting Residuals of Chloramine. ACS Symposium Series, 1996, , 115-125.	0.5	16
106	Alteration of <i>n</i> C ₆₀ in the Presence of Environmentally Relevant Carboxylates. Langmuir, 2012, 28, 7622-7630.	3.5	16
107	Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nature Sustainability, 2021, 4, 699-707.	23.7	16
108	Surface-enhanced Raman spectroscopy enabled evaluation of bacterial inactivation. Water Research, 2022, 220, 118668.	11.3	16

#	Article	IF	CITATIONS
109	Stable oligonucleotide-functionalized gold nanosensors for environmental biocontaminant monitoring. Journal of Environmental Sciences, 2017, 62, 49-59.	6.1	15
110	Porous Media-Induced Aggregation of Protein-Stabilized Gold Nanoparticles. Environmental Science & Technology, 2014, 48, 1532-1540.	10.0	14
111	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	3.2	14
112	Silver Sulfidation in Thermophilic Anaerobic Digesters and Effects on Antibiotic Resistance Genes. Environmental Engineering Science, 2016, 33, 1-10.	1.6	13
113	Insights gained into activated sludge nitrification through structural and functional profiling of microbial community response to starvation stress. Environmental Science: Water Research and Technology, 2019, 5, 884-896.	2.4	13
114	Microporous Multiresonant Plasmonic Meshes by Hierarchical Micro–Nanoimprinting for Bioâ€Interfaced SERS Imaging and Nonlinear Nanoâ€Optics. Small, 2022, 18, e2106887.	10.0	13
115	The Aromatic Amine p <i>K</i> _a Determines the Affinity for Citrate-Coated Gold Nanoparticles: <i>In Situ</i> Observation via Hot Spot-Normalized Surface-Enhanced Raman Spectroscopy. Environmental Science and Technology Letters, 2019, 6, 199-204.	8.7	12
116	Bromide ion-functionalized nanoprobes for sensitive and reliable pH measurement by surface-enhanced Raman spectroscopy. Analyst, The, 2019, 144, 7326-7335.	3.5	12
117	Life Cycle Impact Assessment of Iron Oxide (Fe ₃ O ₄ /γ-Fe ₂ O ₃) Nanoparticle Synthesis Routes. ACS Sustainable Chemistry and Engineering, 2022, 10, 3155-3165.	6.7	12
118	Measurement of the Thermal Conductivity of Carbon Nanotube–Tissue Phantom Composites with the Hot Wire Probe Method. Annals of Biomedical Engineering, 2011, 39, 1745-1758.	2.5	11
119	Synthesis and SERS application of gold and iron oxide functionalized bacterial cellulose nanocrystals (Au@Fe ₃ O ₄ @BCNCs). Analyst, The, 2020, 145, 4358-4368.	3.5	11
120	Effects of dilution on the properties of nC60. Environmental Pollution, 2013, 181, 51-59.	7.5	9
121	Nanobiotechnology enabled approaches for wastewater based epidemiology. TrAC - Trends in Analytical Chemistry, 2021, 143, 116400.	11.4	9
122	Characterization of Conventional One-Step Sodium Thiosulfate Facilitated Gold Nanoparticle Synthesis. Nanoscale Research Letters, 2015, 10, 940.	5.7	8
123	Gold nanospheres and gold nanostars immobilized onto thiolated eggshell membranes as highly robust and recyclable catalysts. New Journal of Chemistry, 2017, 41, 9406-9413.	2.8	8
124	Implications of aspect ratio on the uptake and nanotoxicity of gold nanomaterials. NanoImpact, 2019, 14, 100153.	4.5	8
125	Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case Data. ACS ES&T Water, 2022, 2, 2047-2059.	4.6	8
126	The Evolution of Environmental Engineering as a Professional Discipline. Environmental Engineering Science, 2004, 21, 117-123.	1.6	7

#	Article	IF	CITATIONS
127	Recent advances in environmental science and engineering applications of cellulose nanocomposites. Critical Reviews in Environmental Science and Technology, 2023, 53, 650-675.	12.8	7
128	Nanostructured Au-Based Surface-Enhanced Raman Scattering Substrates and Multivariate Regression for pH Sensing. ACS Applied Nano Materials, 2021, 4, 5768-5777.	5.0	6
129	Application of Product Studies in the Elucidation of Chloramine Reaction Pathways. ACS Symposium Series, 1996, , 105-114.	0.5	5
130	The drinking water exposome. Environmental Science: Water Research and Technology, 2016, 2, 561-564.	2.4	5
131	In Situ pH Measurement of Water Droplets Using Flash-Freeze Surface-Enhanced Raman Spectroscopy. Environmental Science and Technology Letters, 2022, 9, 459-465.	8.7	5
132	Surface catalyzed Fenton treatment of bis(2-chloroethyl) ether and bis(2-chloroethoxy) methane. Chemosphere, 2008, 70, 1390-1398.	8.2	3
133	Inspiring a nanocircular economy. Environmental Science: Nano, 2022, 9, 839-840.	4.3	3
134	One-step biosynthesis of a bilayered graphene oxide embedded bacterial nanocellulose hydrogel for versatile photothermal membrane applications. Environmental Science: Nano, 2022, 9, 1639-1650.	4.3	3
135	INTRACELLULAR LOCALIZATION AND KINETICS OF UPTAKE AND CLEARANCE OF GOLD NANOPARTICLES IN PRIMARY HEPATIC CELLS. Nano LIFE, 2012, 02, 1241008.	0.9	2
136	Environmental Engineering Science in the 21st Century. Environmental Engineering Science, 2017, 34, 1-2.	1.6	2
137	Reply to Colussi: Microdroplet interfacial pH, the ongoing discussion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7888-E7889.	7.1	2
138	Offering authors a choice: introduction of optional double-blind peer review. Environmental Science: Nano, 2020, 7, 11-12.	4.3	2
139	MetaMLP: A Fast Word Embedding Based Classifier to Profile Target Gene Databases in Metagenomic Samples. Journal of Computational Biology, 2021, 28, 1063-1074.	1.6	2
140	Low-Temperature Raman Imaging of Component Distribution in Micron-Size Droplets. ACS Earth and Space Chemistry, 0, , .	2.7	2
141	<i>Environmental Science: Nano</i> – looking towards the future. Environmental Science: Nano, 2018, 5, 9-10.	4.3	1
142	NanoEarth (National Center for Earth and Environmental Nanotechnology Infrastructure). , 2018, , 169-192.		1
143	Environmental Science: Nano – looking back, looking forward. Environmental Science: Nano, 2019, 6, 12-12.	4.3	1
144	2019 Best Papers published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2020, 22, 860-862.	3.5	1

#	Article	IF	CITATIONS
145	Response Triclosan research misreported?. Environmental Science & Technology, 2005, 39, 271A-272A.	10.0	0
146	Disinfection By-Product Formation Catalyzed by Nanoparticles in Wastewater Effluents. Proceedings of the Water Environment Federation, 2014, 2014, 2294-2301.	0.0	0
147	Best Papers from 2018 in the <i>Environmental Science</i> family of journals: great science with a global reach. Environmental Sciences: Processes and Impacts, 2019, 21, 603-604.	3.5	0
148	Best Papers from 2018 in the Environmental Science family of journals: great science with a global reach. Environmental Science: Water Research and Technology, 2019, 5, 629-630.	2.4	0
149	Best Papers from 2018 in the Environmental Science family of journals: great science with a global reach. Environmental Science: Nano, 2019, 6, 1004-1005.	4.3	0
150	Offering authors a choice: introduction of optional double-blind peer review. Environmental Sciences: Processes and Impacts, 2020, 22, 10-11.	3.5	0
151	Offering authors a choice: introduction of optional double-blind peer review. Environmental Science: Water Research and Technology, 2020, 6, 10-11.	2.4	0
152	2019 Best Papers published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Nano, 2020, 7, 1630-1632.	4.3	0
153	2019 Best Papers published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 2020, 6, 1210-1212.	2.4	0
154	Best Papers from 2020 published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Science: Nano, 2021, 8, 2411-2413.	4.3	0
155	Best papers from 2020 published in the Environmental Science journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2021, 23, 1252-1254.	3.5	0
156	A Fast Word Embedding Based Classifier to Profile Target Gene Databases in Metagenomic Samples. Lecture Notes in Computer Science, 2021, , 116-126.	1.3	0
157	Best Papers from 2020 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 2021, 7, 1542-1544.	2.4	0
158	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science Atmospheres, 0, , .	2.4	0
159	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Nano, 0, , .	4.3	0
160	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Science: Water Research and Technology, 0, , .	2.4	0
161	Best Papers from 2021 published in the <i>Environmental Science</i> journals of the Royal Society of Chemistry. Environmental Sciences: Processes and Impacts, 2022, 24, 848-850.	3.5	0