Xin Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8451856/publications.pdf

Version: 2024-02-01

687363 552781 42 706 13 26 citations h-index g-index papers 42 42 42 779 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA-15 for CO methanation reaction. Fuel, 2016, 165, 289-297.	6.4	125
2	Effect of MoO ₃ on Structures and Properties of Ni-SiO ₂ Methanation Catalysts Prepared by the Hydrothermal Synthesis Method. Industrial & Digineering Chemistry Research, 2013, 52, 14533-14544.	3.7	60
3	Effect of MoO3 on the heat resistant performances of nickel based MCM-41 methanation catalysts. Fuel, 2014, 116, 25-33.	6.4	60
4	Highly dispersed nickel within mesochannels of SBA-15 for CO methanation with enhanced activity and excellent thermostability. Fuel, 2017, 188, 267-276.	6.4	48
5	Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid. Polymers for Advanced Technologies, 2021, 32, 1548-1559.	3.2	38
6	Impact of double-solvent impregnation on the Ni dispersion of Ni/SBA-15 catalysts and catalytic performance for the syngas methanation reaction. RSC Advances, 2016, 6, 35875-35883.	3.6	34
7	Synergistic effect of Ni-based bimetallic catalyst with intumescent flame retardant on flame retardancy and thermal stability of polypropylene. Polymer Degradation and Stability, 2016, 129, 114-124.	5.8	30
8	Chain extension and oxidation stabilization of Triphenyl Phosphite (TPP) in PLA. Polymer Degradation and Stability, 2016, 124, 112-118.	5.8	28
9	Structure effect of phosphite on the chain extension in PLA. Polymer Degradation and Stability, 2015, 120, 283-289.	5.8	26
10	Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane. Polymers, 2019, 11, 1304.	4.5	21
11	Kinetic study on lipase catalyzed trans-esterification of palm oil and dimethyl carbonate for biodiesel production. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	19
12	Effect of La, Mg and Mo additives on dispersion and thermostability of Ni species on KIT-6 for CO methanation. Applied Catalysis A: General, 2017, 543, 125-132.	4.3	18
13	Electrospun bead-in-string fibrous membrane prepared from polysilsesquioxane-immobilising poly(lactic acid) with low filtration resistance for air filtration. Journal of Polymer Research, 2020, 27, 1.	2.4	18
14	Improving the stability and ductility of polylactic acid <i>via</i> phosphite functional polysilsesquioxane. RSC Advances, 2019, 9, 25151-25157.	3.6	14
15	Preparation and foaming mechanism of foamable polypropylene based on self-assembled nanofibrils from sorbitol nucleating agents. Journal of Materials Science, 2016, 51, 788-796.	3.7	13
16	Rheological, crystallization and foaming behaviors of high melt strength polypropylene in the presence of polyvinyl acetate. Journal of Polymer Research, 2018, 25, 1.	2.4	13
17	The effects of octadecylamine functionalized multi-wall carbon nanotubes on the conductive and mechanical properties of ultra-high molecular weight polyethylene. Journal of Polymer Research, 2018, 25, 1.	2.4	11
18	Effect of Precursors of Fe-Based Fischer–Tropsch Catalysts Supported on Expanded Graphite for CO ₂ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15545-15556.	6.7	11

#	Article	IF	CITATIONS
19	Control of thermal degradation of poly(lactic acid) using functional polysilsesquioxane microspheres as chain extenders. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
20	Effect of nucleating agent supported on zeolite via the impregnation on the crystallization ability of isotactic polypropylene and its mechanism. Polymers for Advanced Technologies, 2019, 30, 2674-2685.	3.2	10
21	Antioxidation and mechanism of phosphites including the free phenolic hydroxyl group in polypropylene. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
22	Synthesis of a novel comb-like copolymer used as dispersant in organic solvent and influence of free comb-like copolymer on CaCO ₃ suspension. Journal of Dispersion Science and Technology, 2017, 38, 1003-1010.	2.4	8
23	Effect of the Metal Phenylphosphonates on the Nonisothermal Crystallization and Performance of Isotactic Polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 161-173.	2.1	8
24	Enhanced sintering resistance of bimetal/SBA-15 catalysts with promising activity under a low temperature for CO methanation. RSC Advances, 2020, 10, 20852-20861.	3.6	8
25	Enhancement of cardanol-loaded halloysite for the thermo-oxidative stability and crystallization property of polylactic acid. Applied Clay Science, 2022, 216, 106357.	5.2	8
26	Isothermal and non-isothermal crystallization of isotactic polypropylene in the presence of an \hat{l}_{\pm} nucleating agent and zeolite 13X. Thermochimica Acta, 2018, 667, 9-18.	2.7	7
27	The mechanical properties, crystallization and rheological behavior of isotactic polypropylene with nucleating agent supported on polyhedral oligomeric silsesquioxanes (POSS). Journal of Polymer Research, 2020, 27, 1.	2.4	7
28	Novel Comb-Like Copolymer Dispersant for Polypropylene/CaCO3 Composites and Its Influence on Dispersion, Crystallization, Mechanical, and Thermal Properties. Polymer-Plastics Technology and Engineering, 2018, 57, 986-996.	1.9	6
29	Promotion of zeolite as dispersion support for properties improvement of $\hat{l}\pm$ nucleating agent in polypropylene. Journal of Polymer Research, 2019, 26, 1.	2.4	6
30	Recovering high value-added substances from corn distillers dried grains with solubles: a semi-continuous countercurrent downstream processing method. Journal of Chemical Technology and Biotechnology, 2016, 91, 1327-1338.	3.2	5
31	Influence of comb-like copolymer dispersants with different molecular structures on the performance of CaCO3 suspension in organic system. Journal of Dispersion Science and Technology, 2017, 38, 1311-1318.	2.4	5
32	Structure effect of benzofuranone on the antiâ€oxidation kinetics in polypropylene. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 111-116.	1.5	3
33	Antioxidant mechanism of a 3-arylbenzofuranone containing a 2′-hydroxyl group. Journal of Vinyl and Additive Technology, 2013, 19, 198-202.	3.4	3
34	Preparation of a biobased coreâ€shell flame retardant and its application in polylactic acid. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
35	Enhanced crystallization property and equilibrious mechanical properties of a novel self-assembly nucleating system based phosphate for polypropylene. Journal of Polymer Research, 2022, 29, .	2.4	3
36	Fully Biodegradable Long-Chain Branched Polylactic Acid with High Crystallization Performance and Heat Resistance. Industrial & Engineering Chemistry Research, 2022, 61, 10945-10954.	3.7	3

#	Article	IF	CITATION
37	Effect of hydrogen donating ability of benzofuranone on the antioxidant activity. Science Bulletin, 2010, 55, 27-31.	1.7	2
38	Comb-like copolymer dispersant for PP/CaCO3 composites: effects of particle concentration on properties of composites. Journal of Polymer Engineering, 2017, 37, 607-616.	1.4	2
39	Enhancement of "in-situ―dispersed NA11 for the mechanical and crystallization properties of polypropylene. Journal of Polymer Research, 2022, 29, 1.	2.4	2
40	Effect of benzofuranone on degradation and mechanical properties of polypropylene in processing. Journal of Vinyl and Additive Technology, 2018, 24, 124-129.	3.4	1
41	Effect of alkyl group on the chain extension of phosphites in polylactide. Journal of Vinyl and Additive Technology, 2019, 25, 144-148.	3.4	1
42	Improvement of $\hat{l}^2 \hat{a} \in \mathcal{E}$ y clodextrin /cardanol inclusion complex for the thermal $\hat{a} \in \mathcal{E}$ x idative stability and environmental $\hat{a} \in \mathcal{E}$ consists antioxidation releasing property of polylactic acid. Polymers for Advanced Technologies, $0, \dots$	3.2	0