Daniel A Ruddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8451837/publications.pdf

Version: 2024-02-01

218677 214800 2,295 56 26 47 citations h-index g-index papers 63 63 63 3364 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Catalyst design to direct high-octane gasoline fuel properties for improved engine efficiency. Applied Catalysis B: Environmental, 2022, 301, 120801.	20.2	7
2	Throughput Optimization of Molybdenum Carbide Nanoparticle Catalysts in a Continuous Flow Reactor Using Design of Experiments. ACS Applied Nano Materials, 2022, 5, 1966-1975.	5.0	10
3	Catalytic Activation of Polyethylene Model Compounds Over Metalâ€Exchanged Beta Zeolites. ChemSusChem, 2022, 15, .	6.8	5
4	Blended fuel property analysis of butyl-exchanged polyoxymethylene ethers as renewable diesel blendstocks. Fuel, 2022, 322, 124220.	6.4	3
5	Connecting cation site location to alkane dehydrogenation activity in Ni/BEA catalysts. Journal of Catalysis, 2022, 413, 264-273.	6.2	3
6	Controlled Synthesis of Transition Metal Phosphide Nanoparticles to Establish Composition-Dependent Trends in Electrocatalytic Activity. Chemistry of Materials, 2022, 34, 6255-6267.	6.7	17
7	Synthesis of Butyl-Exchanged Polyoxymethylene Ethers as Renewable Diesel Blendstocks with Improved Fuel Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 6266-6273.	6.7	10
8	Spectroscopic insight into carbon speciation and removal on a Cu/BEA catalyst during renewable high-octane hydrocarbon synthesis. Applied Catalysis B: Environmental, 2021, 287, 119925.	20.2	9
9	Property predictions demonstrate that structural diversity can improve the performance of polyoxymethylene ethers as potential bio-based diesel fuels. Fuel, 2021, 295, 120509.	6.4	21
10	An Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO ₂ Hydrogenation. Journal of the American Chemical Society, 2020, 142, 1010-1019.	13.7	79
11	Dehydrogenative Coupling of Methanol for the Gas-Phase, One-Step Synthesis of Dimethoxymethane over Supported Copper Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12151-12160.	6.7	22
12	Electrocatalytic CO ₂ Reduction over Cu ₃ P Nanoparticles Generated via a Molecular Precursor Route. ACS Applied Energy Materials, 2020, 3, 10435-10446.	5.1	16
13	Methanol to high-octane gasoline within a market-responsive biorefinery concept enabled by catalysis. Nature Catalysis, 2019, 2, 632-640.	34.4	33
14	<i>In situ</i> S/TEM Reactions of Ag/ZrO ₂ /SBA-16 Catalysts for Single-Step Conversion of Ethanol to Butadiene. Microscopy and Microanalysis, 2019, 25, 1460-1461.	0.4	4
15	High-Octane Gasoline from Biomass: Experimental, Economic, and Environmental Assessment. Applied Energy, 2019, 241, 25-33.	10.1	25
16	Growing the Bioeconomy through Catalysis: A Review of Recent Advancements in the Production of Fuels and Chemicals from Syngas-Derived Oxygenates. ACS Catalysis, 2019, 9, 4145-4172.	11.2	73
17	Thermodynamic Stability of Molybdenum Oxycarbides Formed from Orthorhombic Mo ₂ C in Oxygen-Rich Environments. Journal of Physical Chemistry C, 2018, 122, 1223-1233.	3.1	33
18	Deep eutectic solvent approach towards nickel/nickel nitride nanocomposites. Catalysis Today, 2018, 306, 9-15.	4.4	28

#	Article	IF	Citations
19	In Situ S/TEM Reduction Reaction of Ni-Mo2C Catalyst for Biomass Conversion. Microscopy and Microanalysis, 2018, 24, 322-323.	0.4	1
20	Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. Energy and Environmental Science, 2018, 11, 2904-2918.	30.8	95
21	Exploring Low-Temperature Dehydrogenation at Ionic Cu Sites in Beta Zeolite To Enable Alkane Recycle in Dimethyl Ether Homologation. ACS Catalysis, 2017, 7, 3662-3667.	11.2	13
22	Late-Transition-Metal-Modified \hat{l}^2 -Mo ₂ C Catalysts for Enhanced Hydrogenation during Guaiacol Deoxygenation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11433-11439.	6.7	42
23	High-Throughput Continuous Flow Synthesis of Nickel Nanoparticles for the Catalytic Hydrodeoxygenation of Guaiacol. ACS Sustainable Chemistry and Engineering, 2017, 5, 632-639.	6.7	50
24	In situ S/TEM Reduction Reaction of Calcined Cu/BEA-zeolite Catalyst. Microscopy and Microanalysis, 2017, 23, 944-945.	0.4	0
25	An investigation into support cooperativity for the deoxygenation of guaiacol over nanoparticle Ni and Rh ₂ P. Catalysis Science and Technology, 2017, 7, 2954-2966.	4.1	21
26	Synthesis of αâ€MoC _{1â^°<i>x</i>} Nanoparticles with a Surfaceâ€Modified SBAâ€15 Hard Template: Determination of Structureâ€"Function Relationships in Acetic Acid Deoxygenation. Angewandte Chemie, 2016, 128, 9172-9175.	2.0	2
27	Synthesis of αâ€MoC _{1â^'<i>x</i>} Nanoparticles with a Surfaceâ€Modified SBAâ€15 Hard Template: Determination of Structureâ€"Function Relationships in Acetic Acid Deoxygenation. Angewandte Chemie - International Edition, 2016, 55, 9026-9029.	13.8	44
28	Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES. Catalysis Science and Technology, 2016, 6, 6339-6353.	4.1	90
29	Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories. ACS Catalysis, 2016, 6, 3227-3235.	11.2	2
30	Experimental and Computational Investigation of Acetic Acid Deoxygenation over Oxophilic Molybdenum Carbide: Surface Chemistry and Active Site Identity. ACS Catalysis, 2016, 6, 1181-1197.	11.2	76
31	Mixed alcohol dehydration over Brønsted and Lewis acidic catalysts. Applied Catalysis A: General, 2016, 510, 110-124.	4.3	59
32	Femtosecond Measurements Of Size-Dependent Spin Crossover In Fe ^{II //sup>(pyz)Pt(CN) //sub> Nanocrystals. Journal of Physical Chemistry Letters, 2016, 7, 148-153.}	4.6	12
33	Role of the Support and Reaction Conditions on the Vapor-Phase Deoxygenation of <i>m</i> -Cresol over Pt/C and Pt/TiO ₂ Catalysts. ACS Catalysis, 2016, 6, 2715-2727.	11.2	123
34	Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions. Topics in Catalysis, 2016, 59, 124-137.	2.8	42
35	Conversion of Dimethyl Ether to 2,2,3-Trimethylbutane over a Cu/BEA Catalyst: Role of Cu Sites in Hydrogen Incorporation. ACS Catalysis, 2015, 5, 1794-1803.	11.2	37
36	Synthesis, optical, and photocatalytic properties of cobalt mixed-metal spinel oxides Co(Al _{1â^'x} Ga _x) ₂ O ₄ . Journal of Materials Chemistry A, 2015, 3, 8115-8122.	10.3	18

#	Article	IF	CITATIONS
37	Structure–Function Relationships for Electrocatalytic Water Oxidation by Molecular [Mn ₁₂ O ₁₂] Clusters. Inorganic Chemistry, 2015, 54, 4550-4555.	4.0	26
38	A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts. Chemistry of Materials, 2015, 27, 7580-7592.	6.7	60
39	Recent advances in heterogeneous catalysts for bio-oil upgrading via "ex situ catalytic fast pyrolysis― catalyst development through the study of model compounds. Green Chemistry, 2014, 16, 454-490.	9.0	418
40	Deactivation and stability of K-CoMoSx mixed alcohol synthesis catalysts. Journal of Catalysis, 2014, 309, 199-208.	6.2	28
41	Non-aqueous thermolytic route to oxynitride photomaterials using molecular precursors Ti(OtBu)4 and Nî€,Mo(OtBu)3. Journal of Materials Chemistry A, 2013, 1, 14066.	10.3	2
42	Surface Chemistry Exchange of Alloyed Germanium Nanocrystals: A Pathway Toward Conductive Group IV Nanocrystal Films. Journal of Physical Chemistry Letters, 2013, 4, 416-421.	4.6	39
43	Control of PbSe Quantum Dot Surface Chemistry and Photophysics Using an Alkylselenide Ligand. ACS Nano, 2012, 6, 5498-5506.	14.6	99
44	Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals. ACS Nano, 2010, 4, 7459-7466.	14.6	135
45	The Influence of Surface Modification on the Epoxidation Selectivity and Mechanism of TiSBA15 and TaSBA15 Catalysts with Aqueous Hydrogen Peroxide. Topics in Catalysis, 2008, 48, 99-106.	2.8	21
46	Synthesis and characterization of 1-methyl-1-silaindane and 1-methyl-1-germaindane. Journal of Organometallic Chemistry, 2008, 693, 169-172.	1.8	3
47	Site-Isolated Pt-SBA15 Materials from Tris(<i>tert</i> -butoxy)siloxy Complexes of Pt(II) and Pt(IV). Chemistry of Materials, 2008, 20, 6517-6527.	6.7	38
48	Kinetics and Mechanism of Olefin Epoxidation with Aqueous H ₂ O ₂ and a Highly Selective Surface-Modified TaSBA15 Heterogeneous Catalyst. Journal of the American Chemical Society, 2008, 130, 11088-11096.	13.7	73
49	Highly selective olefin epoxidation with aqueous H2O2 over surface-modified TaSBA15 prepared via the TMP method. Chemical Communications, 2007, , 3350.	4.1	48
50	Thermolytic molecular precursor route to site-isolated vanadia–silica materials and their catalytic performance in methane selective oxidation. Journal of Catalysis, 2006, 238, 277-285.	6.2	63
51	Influence of Surface Modification of Tiâ^3SBA15 Catalysts on the Epoxidation Mechanism for Cyclohexene with Aqueous Hydrogen Peroxide. Langmuir, 2005, 21, 9576-9583.	3.5	70
52	Acylative Dimerization of Tetrahydrofuran Catalyzed by Rareâ€Earth Triflates. Synthetic Communications, 2004, 34, 1871-1880.	2.1	12
53	Acylative Dimerization of Tetrahydrofuran Catalyzed by Rare-Earth Triflates ChemInform, 2004, 35, no.	0.0	0
54	Determination of the active ingredient loperamide hydrochloride in pharmaceutical caplets by high performance thin layer chromatography with ultraviolet absorption densitometry of fluorescence quenched zones. Acta Poloniae Pharmaceutica, 2002, 59, 15-8.	0.1	1

#	Article	IF	CITATIONS
55	Transitioning rationally designed catalytic materials to real "working―catalysts produced at commercial scale: nanoparticle materials. Catalysis, 0, , 213-281.	1.0	12
56	Direct Conversion of Renewable CO ₂ -Rich Syngas to High-Octane Hydrocarbons in a Single Reactor. ACS Catalysis, 0, , 9270-9280.	11.2	1