Jette S Kastrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8451713/publications.pdf

Version: 2024-02-01

		279487	377514
53	1,405 citations	23	34
papers	citations	h-index	g-index
56	56	56	1349
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural basis for positive allosteric modulation of AMPA and kainate receptors. Journal of Physiology, 2022, 600, 181-200.	1.3	16
2	Binding of a negative allosteric modulator and competitive antagonist can occur simultaneously at the ionotropic glutamate receptor GluA2. FEBS Journal, 2021, 288, 995-1007.	2.2	9
3	Development of Thiochroman Dioxide Analogues of Benzothiadiazine Dioxides as New Positive Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. ACS Chemical Neuroscience, 2021, 12, 2679-2692.	1.7	11
4	Ionotropic Glutamate Receptor GluA2 in Complex with Bicyclic Pyrimidinedione-Based Compounds: When Small Compound Modifications Have Distinct Effects on Binding Interactions. ACS Chemical Neuroscience, 2020, 11, 1791-1800.	1.7	8
5	<i>N</i> -(7-(1 <i>H</i> -lmidazol-1-yl)-2,3-dioxo-6-(trifluoromethyl)-3,4-dihydroquinoxalin-1(2 <i>H</i>)-yl)benzamid a New Kainate Receptor Selective Antagonist and Analgesic: Synthesis, X-ray Crystallography, Structureâ€"Affinity Relationships, and in Vitro and in Vivo Pharmacology. ACS Chemical Neuroscience, 2019, 10, 4685-4695.	de, 1.7	8
6	Nanoscale Mobility of the Apo State and TARP Stoichiometry Dictate the Gating Behavior of Alternatively Spliced AMPA Receptors. Neuron, 2019, 102, 976-992.e5.	3.8	25
7	Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands. Journal of Medicinal Chemistry, 2019, 62, 4467-4482.	2.9	18
8	<i>N</i> 1-Substituted Quinoxaline-2,3-diones as Kainate Receptor Antagonists: X-ray Crystallography, Structure–Affinity Relationships, and in Vitro Pharmacology. ACS Chemical Neuroscience, 2019, 10, 1841-1853.	1.7	13
9	Crystal Structures of Potent Dimeric Positive Allosteric Modulators at the Ligand-Binding Domain of the GluA2 Receptor. ACS Medicinal Chemistry Letters, 2019, 10, 243-247.	1.3	6
10	(<i>S</i>)-2-Amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)propanoic Acid (AMPA) and Kainate Receptor Ligands: Further Exploration of Bioisosteric Replacements and Structural and Biological Investigation. Journal of Medicinal Chemistry, 2018, 61, 2124-2130.	2.9	20
11	7-Phenoxy-Substituted 3,4-Dihydro-2 <i>H</i> -1,2,4-benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Nanomolar Potency. Journal of Medicinal Chemistry, 2018, 61, 251-264.	2.9	41
12	Invisible detergents for structure determination of membrane proteins by smallâ€angle neutron scattering. FEBS Journal, 2018, 285, 357-371.	2.2	52
13	Enhancing Action of Positive Allosteric Modulators through the Design of Dimeric Compounds. Journal of Medicinal Chemistry, 2018, 61, 5279-5291.	2.9	41
14	Small-angle neutron scattering studies on the AMPA receptor GluA2 in the resting, AMPA-bound and GYKI-53655-bound states. IUCrJ, 2018, 5, 780-793.	1.0	9
15	Lessons from crystal structures of kainate receptors. Neuropharmacology, 2017, 112, 16-28.	2.0	40
16	The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region. Scientific Reports, 2017, 7, 46145.	1.6	15
17	Identification and Structure-Function Study of Positive Allosteric Modulators of Kainate Receptors. Molecular Pharmacology, 2017, 91, 576-585.	1.0	21
18	Structure and Affinity of Two Bicyclic Glutamate Analogues at AMPA and Kainate Receptors. ACS Chemical Neuroscience, 2017, 8, 2056-2064.	1.7	15

#	Article	IF	CITATIONS
19	A pharmacological profile of the high-affinity GluK5 kainate receptor. European Journal of Pharmacology, 2016, 788, 315-320.	1.7	8
20	The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate. Structure, 2016, 24, 1582-1589.	1.6	10
21	A parallel panning scheme used for selection of a GluA4-specific Fab targeting the ligand-binding domain. International Journal of Biological Macromolecules, 2016, 92, 779-787.	3.6	2
22	Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2. Biophysical Journal, 2016, 110, 2397-2406.	0.2	20
23	Studies on Aryl-Substituted Phenylalanines: Synthesis, Activity, and Different Binding Modes at AMPA Receptors. Journal of Medicinal Chemistry, 2016, 59, 448-461.	2.9	8
24	Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholineâ€Binding Protein as a Structural Surrogate. Basic and Clinical Pharmacology and Toxicology, 2016, 118, 399-407.	1.2	33
25	Tweaking Subtype Selectivity and Agonist Efficacy at (S)-2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) Receptors in a Small Series of BnTetAMPA Analogues. Journal of Medicinal Chemistry, 2016, 59, 2244-2254.	2.9	4
26	Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors. Molecular Pharmacology, 2016, 89, 253-262.	1.0	26
27	Synthesis and Pharmacology of Mono-, Di-, and Trialkyl-Substituted 7-Chloro-3,4-dihydro-2 <i>H</i> -1,2,4-benzothiadiazine 1,1-Dioxides Combined with X-ray Structure Analysis to Understand the Unexpected Structure–Activity Relationship at AMPA Receptors. ACS Chemical Neuroscience, 2016, 7, 378-390.	1.7	29
28	Acetylcholine-Binding Protein Engineered to Mimic the $\langle i \rangle \hat{l} \pm \langle i \rangle 4 - \langle i \rangle \hat{l} \pm \langle i \rangle 4$ Binding Pocket in $\langle i \rangle \hat{l} \pm \langle i \rangle 4 - \langle i \rangle \hat{l} \pm \langle i \rangle 2$ Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity. Molecular Pharmacology, 2015, 88, 697-707.	1.0	24
29	Structure–Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2 <i>S</i> ,3 <i>R</i>)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid. Journal of Medicinal Chemistry, 2015, 58, 6131-6150.	2.9	19
30	Binding Mode of an α-Amino Acid-Linked Quinoxaline-2,3-dione Analogue at Glutamate Receptor Subtype GluK1. ACS Chemical Neuroscience, 2015, 6, 845-854.	1.7	21
31	Engineered $\hat{1}\pm4\hat{1}^22$ nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity $\hat{1}\pm4\hat{a}$ interface. Neuropharmacology, 2015, 92, 135-145.	2.0	23
32	Molecular Recognition of the Neurotransmitter Acetylcholine by an Acetylcholine Binding Protein Reveals Determinants of Binding to Nicotinic Acetylcholine Receptors. PLoS ONE, 2014, 9, e91232.	1.1	36
33	Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain: Combining Experimental and Computational Methods Unravels Differences in Driving Forces. Journal of Chemical Information and Modeling, 2014, 54, 3404-3416.	2.5	18
34	Molecular Recognition of Two 2,4â€ <i>syn</i> â€Functionalized (<i>S</i>)â€Glutamate Analogues by the Kainate Receptor GluK3 Ligand Binding Domain. ChemMedChem, 2014, 9, 2254-2259.	1.6	12
35	Positive Allosteric Modulators of 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid Receptors Belonging to 4-Cyclopropyl-3,4-dihydro-2<\>H-1,2,4-pyridothiadiazine Dioxides and Diversely Chloro-Substituted 4-Cyclopropyl-3,4-dihydro-2<\>H-1,2,4-benzothiadiazine 1,1-Dioxides. Journal of Medicinal Chemistry, 2014, 57, 9539-9553.	2.9	25
36	<scp>L</scp> â€Asp is a useful tool in the purification of the ionotropic glutamate receptorÂA2 ligandâ€binding domain. FEBS Journal, 2014, 281, 2422-2430.	2.2	15

#	Article	IF	CITATIONS
37	Structural and Functional Studies of the Modulator NS9283 Reveal Agonist-like Mechanism of Action at $\hat{1}\pm4\hat{1}^22$ Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2014, 289, 24911-24921.	1.6	36
38	Synthesis, Pharmacological and Structural Characterization, and Thermodynamic Aspects of GluA2-Positive Allosteric Modulators with a 3,4-Dihydro-2 <i>H</i> -1,2,4-benzothiadiazine 1,1-Dioxide Scaffold. Journal of Medicinal Chemistry, 2013, 56, 8736-8745.	2.9	38
39	Chemoenzymatic Synthesis of New 2,4- <i>syn</i> -Functionalized (<i>S</i>)-Glutamate Analogues and Structure–Activity Relationship Studies at Ionotropic Glutamate Receptors and Excitatory Amino Acid Transporters. Journal of Medicinal Chemistry, 2013, 56, 1614-1628.	2.9	42
40	Structural analysis of the positive AMPA receptor modulators CX516 and Me-CX516 in complex with the GluA2 ligand-binding domain. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1645-1652.	2. 5	13
41	Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2. Biochemical Journal, 2012, 441, 173-178.	1.7	37
42	Kainate induces various domain closures in AMPA and kainate receptors. Neurochemistry International, 2012, 61, 536-545.	1.9	17
43	Selective Kainate Receptor (GluK1) Ligands Structurally Based upon 1 <i>H</i> -Cyclopentapyrimidin-2,4(1 <i>H</i> ,3 <i>H</i>)-dione: Synthesis, Molecular Modeling, and Pharmacological and Biostructural Characterization. Journal of Medicinal Chemistry, 2011, 54, 4793-4805.	2.9	21
44	Binding site and interlobe interactions of the ionotropic glutamate receptor GluK3 ligand binding domain revealed by high resolution crystal structure in complex with (S)-glutamate. Journal of Structural Biology, 2011, 176, 307-314.	1.3	26
45	Lessons from more than 80 structures of the GluA2 ligand-binding domain inÂcomplex with agonists, antagonists and allosteric modulators. Neuropharmacology, 2011, 60, 135-150.	2.0	86
46	Biostructural and Pharmacological Studies of Bicyclic Analogues of the 3-Isoxazolol Glutamate Receptor Agonist Ibotenic Acid. Journal of Medicinal Chemistry, 2010, 53, 8354-8361.	2.9	20
47	Distinct Structural Features of Cyclothiazide Are Responsible for Effects on Peak Current Amplitude and Desensitization Kinetics at iGluR2. Journal of Molecular Biology, 2009, 391, 906-917.	2.0	29
48	Partial Agonism and Antagonism of the Ionotropic Glutamate Receptor iGLuR5. Journal of Biological Chemistry, 2007, 282, 25726-25736.	1.6	48
49	A Tetrazolyl-Substituted Subtype-Selective AMPA Receptor Agonist⊥. Journal of Medicinal Chemistry, 2007, 50, 2408-2414.	2.9	29
50	Structural Proof of a Dimeric Positive Modulator Bridging Two Identical AMPA Receptor-Binding Sites. Chemistry and Biology, 2007, 14, 1294-1303.	6.2	63
51	Tyr702 Is an Important Determinant of Agonist Binding and Domain Closure of the Ligand-Binding Core of GluR2. Molecular Pharmacology, 2005, 67, 703-713.	1.0	50
52	Crystal structure of the kainate receptor GluR5 ligand-binding core in complex with (S)-glutamate. FEBS Letters, 2005, 579, 1154-1160.	1.3	87
53	Three-Dimensional Structure of the Ligand-Binding Core of GluR2 in Complex with the Agonist (S)-ATPA:Â Implications for Receptor Subunit Selectivity. Journal of Medicinal Chemistry, 2003, 46, 872-875.	2.9	59