List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8451284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The promotion of sulfuric vacancy in two-dimensional molybdenum disulfide on the sensing performance of SF6 decomposition components. Applied Surface Science, 2022, 571, 151377.	3.1	10
2	High-Performance Flexible Heater With Command-Responding Function Attained by Direct Laser Writing on Nomex Paper. IEEE Electron Device Letters, 2022, 43, 462-465.	2.2	10
3	Humidity-Based Human–Machine Interaction System for Healthcare Applications. ACS Applied Materials & Interfaces, 2022, 14, 12606-12616.	4.0	22
4	Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system. Nano Energy, 2022, 96, 107099.	8.2	60
5	Nomex paper-based double-sided laser-induced graphene for multifunctional human-machine interfaces. Carbon, 2022, 193, 68-76.	5.4	13
6	Highly Skin-Compliant Polymeric Electrodes with Synergistically Boosted Conductivity toward Wearable Health Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 20113-20121.	4.0	10
7	A Flexible Graphene-Based Fabric Ultrasound Source for Machine Learning Enhanced Information Encryption. IEEE Electron Device Letters, 2022, 43, 1543-1546.	2.2	4
8	Rh-doped h-BN monolayer as a high sensitivity SF6 decomposed gases sensor: A DFT study. Applied Surface Science, 2021, 536, 147965.	3.1	76
9	Graphene-based film heater fabricated by laser writing. Materials Letters, 2021, 284, 128869.	1.3	11
10	Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nature Communications, 2021, 12, 1776.	5.8	109
11	Gas Sensor Based on Semihydrogenated and Semifluorinated h-BN for SFâ,† Decomposition Components Detection. IEEE Transactions on Electron Devices, 2021, 68, 1878-1885.	1.6	12
12	First-principles calculations of adsorption sensitivity of Au-doped MoS2 gas sensor to main characteristic gases in oil. Journal of Materials Science, 2021, 56, 13673-13683.	1.7	27
13	Sensing Characteristics of Toxic Câ,"Fâ,‡N Decomposition Products on Metallic- Nanoparticle Co-Doped BN Monolayer: A First Principles Study. IEEE Sensors Journal, 2021, 21, 13082-13089.	2.4	20
14	An Integrated Luminescent Information Encryption–Decryption and Anticounterfeiting Chip Based on Laser Induced Graphene. Advanced Functional Materials, 2021, 31, 2103255.	7.8	21
15	Metal Oxide Nanoparticles (XO, X = Cu, Zn, Ni) Doped GeSe Monolayer: Theoretical Exploration of a Novel H ₂ S Gas Sensor for Health and Industrial Monitoring. IEEE Sensors Journal, 2021, 21, 26542-26548.	2.4	10
16	Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sensors and Actuators B: Chemical, 2020, 325, 128790.	4.0	74
17	Tellurene Nanoflake-Based NO ₂ Sensors with Superior Sensitivity and a Sub-Parts-per-Billion Detection Limit. ACS Applied Materials & Interfaces, 2020, 12, 47704-47713.	4.0	54
18	A Monolayer Composite of h-BN Doped by a Nano Graphene Domain: As Sensitive Material for SO ₂ Gas Detection. IEEE Electron Device Letters, 2020, 41, 1404-1407.	2.2	18

#	Article	IF	CITATIONS
19	Integrated Sensing and Warning Multifunctional Devices Based on the Combined Mechanical and Thermal Effect of Porous Graphene. ACS Applied Materials & Interfaces, 2020, 12, 53049-53057.	4.0	16
20	Tellurene based biosensor for detecting DNA/RNA nucleobases and amino acids: A theoretical insight. Applied Surface Science, 2020, 532, 147451.	3.1	27
21	Two-dimensional penta-SiAs ₂ : a potential metal-free photocatalyst for overall water splitting. Journal of Materials Chemistry C, 2020, 8, 11980-11987.	2.7	24
22	High threshold voltage GaN HEMT with mixed conductive channel. , 2020, , .		0
23	Gallium Nitride Dual Two - Dimensional Electron Gas HEMT with a Good Performance: Based on TCAD simulations. , 2020, , .		0
24	Health Monitoring and Automatic Notification Device Based on Laser-Induced Graphene. IEEE Transactions on Electron Devices, 2020, 67, 4488-4492.	1.6	2
25	Simulation Study of GaN-based Trench CAVET with p-Shielded Region. , 2020, , .		0
26	An investigation of the positive effects of doping an Al atom on the adsorption of CO ₂ on BN nanosheets: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 9368-9374.	1.3	22
27	Graphene Oxide Modified Porous Graphene for Aqueous Alcohol Detection. , 2020, 4, 1-4.		4
28	Promoting Crystal Distribution Uniformity Based on the CVD Method with the Aid of Finite Element Methods. Crystal Growth and Design, 2020, 20, 777-782.	1.4	3
29	Improved Performance of Flexible Graphene Heater Based on Repeated Laser Writing. IEEE Electron Device Letters, 2020, 41, 501-504.	2.2	26
30	Monolayer Tellurene-Based Gas Sensor to Detect SF ₆ Decompositions: A First-Principles Study. IEEE Electron Device Letters, 2019, 40, 1522-1525.	2.2	44
31	A Dualâ€Functional Grapheneâ€Based Selfâ€Alarm Healthâ€Monitoring Eâ€Skin. Advanced Functional Materials, 2019, 29, 1904706.	7.8	88
32	An Ultrasensitive Layer-Dependent and Weak Photothermal Interference SPR Sensor Based on Phosphorene/Gold Nanomaterials. , 2019, , .		0
33	Novel Two-dimensional Semiconductor Monolayer SnP2 with Tunable Bandgap. , 2019, , .		0
34	ZnO/WSe ₂ vdW heterostructure for photocatalytic water splitting. Journal of Materials Chemistry C, 2019, 7, 7104-7113.	2.7	93
35	Hybrid Chloroantimonates(III): Thermally Induced Tripleâ€Mode Reversible Luminescent Switching and Laserâ€Printable Rewritable Luminescent Paper. Angewandte Chemie, 2019, 131, 10079-10083.	1.6	21
36	Hybrid Chloroantimonates(III): Thermally Induced Tripleâ€Mode Reversible Luminescent Switching and Laserâ€Printable Rewritable Luminescent Paper. Angewandte Chemie - International Edition, 2019, 58, 9974-9978.	7.2	176

#	Article	IF	CITATIONS
37	The Simulation Study of Ohmic Contact at GaN- HEMT Devices Based on TCAD. , 2019, , .		0
38	Effect of pressure on nano copper sintering in interconnections of power device. , 2019, , .		2
39	Photothermal effects induced by surface plasmon resonance at graphene/gold nanointerfaces: A multiscale modeling study. Biosensors and Bioelectronics, 2019, 126, 470-477.	5.3	14
40	Graphene devices based on laser scribing technology. Japanese Journal of Applied Physics, 2018, 57, 04FA01.	0.8	19
41	Design and Simulation of 1800V 40A 4H-SiC SBD Using TCAD. , 2018, , .		1
42	Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: a DFT + NEGF study. Physical Chemistry Chemical Physics, 2018, 20, 28777-28785.	1.3	15
43	An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale, 2018, 10, 11524-11530.	2.8	77
44	An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nature Communications, 2017, 8, 14579.	5.8	396
45	Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Applied Physics Letters, 2017, 110, .	1.5	116
46	Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale, 2017, 9, 8266-8273.	2.8	100
47	Flexible graphene sound device based on laser reduced graphene. Applied Physics Letters, 2017, 111, .	1.5	24
48	Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano, 2017, 11, 8790-8795.	7.3	572
49	A simple way to grow large-area single-layer MoS <inf>2</inf> film by chemical vapor deposition. , 2017, , .		0
50	Flexible, wearable, and functional graphene-textile composites. Applied Physics Letters, 2017, 110, 261903.	1.5	9
51	A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene. Nanomaterials, 2016, 6, 112.	1.9	18
52	A comparison of Pd and Au electrodes-based LiNbO ₃ surface acoustic wave devices. Modern Physics Letters B, 2016, 30, 1650349.	1.0	2
53	Tunable and wearable high performance strain sensors based on laser patterned graphene flakes. , 2016, , .		1

54 A universal method to grow and etch graphene film. , 2016, , .

0

#	Article	IF	CITATIONS
55	Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Applied Materials & Interfaces, 2016, 8, 26458-26462.	4.0	387
56	Surface Acoustic Wave Devices Based on High Quality Temperature-Compensated Substrates. IEEE Electron Device Letters, 2016, 37, 1063-1066.	2.2	7
57	High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale, 2016, 8, 20090-20095.	2.8	108
58	A point acoustic device based on aluminum nanowires. Nanoscale, 2016, 8, 5516-5525.	2.8	15
59	Electrical thermal acoustic point source based on mems technology. , 2016, , .		Ο
60	Graphem stack: Growth, characterization and diverse devices. , 2015, , .		0
61	Biological information wireless monitoring system. , 2015, , .		0
62	Flexible and large-area sound-emitting device using reduced graphene oxide. , 2013, , .		4