Mark L Tamplin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8450787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling growth and histamine formation of Klebsiella aerogenes TI24 isolated from Indonesian pindang. International Journal of Food Microbiology, 2022, 362, 109459.	4.7	2
2	Detection, quantification, and characterization of <i>Salmonella enterica</i> in mango, tomato, and raw chicken purchased in the central region of Mexico. Journal of Food Science, 2022, 87, 370-382.	3.1	4
3	Quantitative modeling of the survival of Listeria monocytogenes in soy sauce-based acidified food products. International Journal of Food Microbiology, 2022, 370, 109635.	4.7	0
4	Effect of peroxyacetic acid treatment and bruising on the bacterial community and shelf-life of baby spinach. International Journal of Food Microbiology, 2021, 343, 109086.	4.7	4
5	Pathogen growth when implementing †Time as a Public Health Control'. Food Microbiology, 2021, 96, 103718.	4.2	1
6	Modelling viability of Listeria monocytogenes in paneer. Food Microbiology, 2021, 97, 103738.	4.2	5
7	<i>Salmonella enterica</i> in Mexico 2000–2017: Epidemiology, Antimicrobial Resistance, and Prevalence in Food. Foodborne Pathogens and Disease, 2020, 17, 98-118.	1.8	25
8	qPCR quantification of Carnobacterium maltaromaticum, Brochothrix thermosphacta, and Serratia liquefaciens growth kinetics in mixed culture. Journal of Microbiological Methods, 2020, 175, 105961.	1.6	4
9	Effect of glucose, pH and lactic acid on Carnobacterium maltaromaticum, Brochothrix thermosphacta and Serratia liquefaciens within a commercial heat-shrunk vacuum-package film. Food Microbiology, 2020, 91, 103515.	4.2	12
10	Removal of Grit from Baby Leafy Salad Vegetables by Combinations of Sanitiser and Surfactant. Journal of Food Quality, 2019, 2019, 1-8.	2.6	2
11	Genomic and metabolic characterization of spoilage-associated Pseudomonas species. International Journal of Food Microbiology, 2018, 268, 61-72.	4.7	58
12	Vibrioferrin production by the food spoilage bacterium Pseudomonas fragi. FEMS Microbiology Letters, 2018, 365, .	1.8	19
13	Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food Microbiology, 2018, 75, 126-132.	4.2	23
14	Integrating predictive models and sensors to manage food stability in supply chains. Food Microbiology, 2018, 75, 90-94.	4.2	33
15	Characterization of Bacterial Communities in Mexican Artisanal Raw Milk "Bola de Ocosingo―Cheese by High-Throughput Sequencing. Frontiers in Microbiology, 2018, 9, 2598.	3.5	13
16	Characterisation of the Brochothrix thermosphacta sortase A enzyme. FEMS Microbiology Letters, 2018, 365, .	1.8	5
17	Effect of abattoir and cut on variations in microbial communities of vacuum-packaged beef. Meat Science, 2017, 131, 34-39.	5.5	29
18	Insight into the Genome of Brochothrix thermosphacta, a Problematic Meat Spoilage Bacterium. Applied and Environmental Microbiology, 2017, 83, .	3.1	61

Mark L Tamplin

#	Article	IF	CITATIONS
19	InÂvitro characteristics of an Atlantic salmon (Salmo salar L.) hind gut microbial community in relation to different dietary treatments. Research in Microbiology, 2017, 168, 751-759.	2.1	19
20	Culture-dependent and culture-independent assessment of spoilage community growth on VP lamb meat from packaging to past end of shelf-life. Food Microbiology, 2017, 68, 71-80.	4.2	37
21	Effect of Environmental Factors on Intra-Specific Inhibitory Activity of Carnobacterium maltaromaticum. Microorganisms, 2017, 5, 59.	3.6	5
22	A Predictive Model for the Growth of Listeria monocytogenes in Commercial Blue Crab (Callinectes) Tj ETQq0 0 (0 rgBT /Ov	erlock 10 Tf 5

23	Modelling the combined effect of salt, sorbic acid and nisin on the probability of growth of Clostridium sporogenes in high moisture processed cheese analogue. International Dairy Journal, 2016, 57, 62-71.	3.0	16
24	Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet. Microbial Ecology, 2016, 71, 589-603.	2.8	113
25	Microbial and sensorial models for head-on and gutted (HOG) Atlantic Salmon (Salmo salar) stored from 0 to 15°C. Food Microbiology, 2016, 57, 144-150.	4.2	9
26	Modelling the combined effects of salt, sorbic acid and nisin on the probability of growth of Clostridium sporogenes in a controlled environment (nutrient broth). Food Control, 2016, 62, 32-43.	5.5	18
27	Interstrain Interactions between Bacteria Isolated from Vacuum-Packaged Refrigerated Beef. Applied and Environmental Microbiology, 2015, 81, 2753-2761.	3.1	24
28	Evaluation of the effects of sodium chloride, potassium sorbate, nisin and lysozyme on the probability of growth of <i><scp>C</scp>lostridium sporogenes</i> . International Journal of Food Science and Technology, 2014, 49, 1506-1512.	2.7	8
29	High-throughput sequencing of microbial communities in Poro cheese, an artisanal Mexican cheese. Food Microbiology, 2014, 44, 136-141.	4.2	114
30	Microbial growth, communities and sensory characteristics of vacuum and modified atmosphere packaged lamb shoulders. Food Microbiology, 2013, 36, 305-315.	4.2	45
31	Cultured C2C12 cell lines as a model for assessment of bacterial attachment to bovine primary muscle cells. Meat Science, 2013, 94, 215-219.	5.5	3
32	Development and validation of a predictive model for the growth of Vibrio parahaemolyticus in post-harvest shellstock oysters. International Journal of Food Microbiology, 2013, 161, 1-6.	4.7	40
33	Preliminary Stochastic Model for Managing Vibrio parahaemolyticus and Total Viable Bacterial Counts in a Pacific Oyster (Crassostrea gigas) Supply Chain. Journal of Food Protection, 2013, 76, 1168-1178.	1.7	11
34	Development and Validation of a Predictive Model for the Growth of Vibrio vulnificus in Postharvest Shellstock Oysters. Applied and Environmental Microbiology, 2012, 78, 1675-1681.	3.1	27
35	Prevalence, characterization and sources of Listeria monocytogenes in blue crab (Callinectus) Tj ETQq1 1 0.7843	14 rgBT /(4.2	Overlock 10

36 Bacterial attachment to immobilized extracellular matrix proteins in vitro. International Journal of Food Microbiology, 2012, 157, 210-217.

4.7 26

Mark L TAMPLIN

#	Article	IF	CITATIONS
37	Lysozyme as a barrier to growth of Bacillus anthracis strain Sterne in liquid egg white, milk and beef. Food Microbiology, 2011, 28, 1231-1234.	4.2	17
38	Predictive Models for the Effect of Storage Temperature on Vibrio parahaemolyticus Viability and Counts of Total Viable Bacteria in Pacific Oysters (Crassostrea gigas). Applied and Environmental Microbiology, 2011, 77, 8687-8695.	3.1	45
39	Kinetics of growth and inactivation of Salmonella enterica serotype Typhimurium DT104 in pasteurised liquid egg products. Food Microbiology, 2010, 27, 396-402.	4.2	12
40	Thermal inactivation of Bacillus anthracis Sterne in irradiated ground beef heated in a water bath or cooked on commercial grills. Innovative Food Science and Emerging Technologies, 2010, 11, 123-129.	5.6	7
41	Validation of Cooking Times and Temperatures for Thermal Inactivation of Yersinia pestis Strains KIM5 and CDC-A1122 in Irradiated Ground Beef. Journal of Food Protection, 2009, 72, 564-571.	1.7	11
42	The survivability of Bacillus anthracis (Sterne strain) in processed liquid eggs. Food Microbiology, 2009, 26, 123-127.	4.2	8
43	The future of predictive microbiology: Strategic research, innovative applications and great expectations. International Journal of Food Microbiology, 2008, 128, 2-9.	4.7	97
44	Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. International Journal of Food Microbiology, 2008, 128, 354-361.	4.7	154
45	Behavior of <i>Bacillus anthracis</i> Strains Sterne and Ames K0610 in Sterile Raw Ground Beef. Applied and Environmental Microbiology, 2008, 74, 1111-1116.	3.1	12
46	Animal and Environmental Impact on the Presence and Distribution of Salmonella and Escherichia coli in Hydroponic Tomato Greenhouses. Journal of Food Protection, 2008, 71, 676-683.	1.7	40
47	Colonization of Tomatoes by Salmonella Montevideo Is Affected by Relative Humidity and Storage Temperature. Journal of Food Protection, 2007, 70, 30-34.	1.7	80
48	Modelling transfer of Listeria monocytogenes during slicing of â€~gravad' salmon. International Journal of Food Microbiology, 2007, 118, 69-78.	4.7	51
49	Transfer Coefficient Models for Escherichia coli O157:H7 on Contacts between Beef Tissue and High-Density Polyethylene Surfaces. Journal of Food Protection, 2006, 69, 1248-1255.	1.7	27
50	EFFECT OF STORAGE TEMPERATURE ON THE GROWTH OF LISTERIA MONOCYTOGENES ON QUESO BLANCO SLICES*. Journal of Food Safety, 2006, 26, 202-214.	2.3	25
51	Predicting the Growth of Microbial Pathogens in Food. ACS Symposium Series, 2006, , 205-218.	0.5	0
52	Bayesian synthesis of a pathogen growth model: Listeria monocytogenes under competitionâ~†. International Journal of Food Microbiology, 2006, 109, 34-46.	4.7	11
53	Models of the behavior of O157:H7 in raw sterile ground beef stored at 5 to 46 ïչ½C. International Journal of Food Microbiology, 2005, 100, 335-344.	4.7	70
54	The influence of mayonnaise pH and storage temperature on the growth of Listeria monocytogenes in seafood salad. International Journal of Food Microbiology, 2005, 102, 277-285.	4.7	52

Mark L TAMPLIN

#	Article	IF	CITATIONS
55	Quantifying the Robustness of a Broth-Based Escherichia coli O157:H7 Growth Model in Ground Beef. Journal of Food Protection, 2005, 68, 2301-2309.	1.7	9
56	Inactivation of Escherichia coli O157:H7 in Simulated Human Gastric Fluid. Applied and Environmental Microbiology, 2005, 71, 320-325.	3.1	30
57	ComBase: A Common Database on Microbial Responses to Food Environments. Journal of Food Protection, 2004, 67, 1967-1971.	1.7	202
58	Use of Pulsed-Field Gel Electrophoresis To Characterize the Heterogeneity and Clonality of Salmonella Isolates Obtained from the Carcasses and Feces of Swine at Slaughter. Applied and Environmental Microbiology, 2003, 69, 4177-4182.	3.1	32
59	Geographical Variation in Ribotype Profiles of Escherichia coli Isolates from Humans, Swine, Poultry, Beef, and Dairy Cattle in Florida. Applied and Environmental Microbiology, 2003, 69, 1089-1092.	3.1	98
60	Distribution Patterns of Escherichia coli O157:H7 in Ground Beef Produced by a Laboratory-Scale Grinder. Journal of Food Protection, 2002, 65, 1894-1902.	1.7	25
61	Growth of Escherichia coli O157:H7 in Raw Ground Beef Stored at 10° C and the Influence of Competitive Bacterial Flora, Strain Variation, and Fat Level. Journal of Food Protection, 2002, 65, 1535-1540.	1.7	67
62	Phenotypic and genotypic characterization of human and nonhuman escherichia coli. Water Research, 2001, 35, 379-386.	11.3	73
63	Elution, Detection, and Quantification of Polio I, Bacteriophages, Salmonella Montevideo, and Escherichia coli O157:H7 from Seeded Strawberries and Tomatoes. Journal of Food Protection, 2001, 64, 292-297.	1.7	31
64	Salmonella spp. and Escherichia coli Biotype I on Swine Carcasses Processed under the Hazard Analysis and Critical Control Point–Based Inspection Models Project. Journal of Food Protection, 2001, 64, 1305-1308.	1.7	26
65	Coastal Vibrios: Identifying Relationships between Environmental Condition and Human Disease. Human and Ecological Risk Assessment (HERA), 2001, 7, 1437-1445.	3.4	29
66	Comparison of Cultivation and PCR-Hybridization for Detection of Salmonella in Porcine Fecal and Water Samples. Journal of Clinical Microbiology, 2001, 39, 2477-2484.	3.9	59
67	Pathogenesis of Infection by Clinical and Environmental Strains of Vibrio vulnificus in Iron-Dextran-Treated Mice. Infection and Immunity, 2000, 68, 5785-5793.	2.2	95
68	Discriminant Analysis of Ribotype Profiles of Escherichia coli for Differentiating Human and Nonhuman Sources of Fecal Pollution. Applied and Environmental Microbiology, 1999, 65, 3142-3147.	3.1	202
69	Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides. Water Research, 1999, 33, 769-777.	11.3	93
70	Enhanced Broth Media for Selective Growth of Vibrio vulnificus. Applied and Environmental Microbiology, 1998, 64, 2701-2704.	3.1	18
71	Cholera DFA: An improved direct fluorescent monoclonal antibody staining kit for rapid detection and enumeration of Vibrio choleraeO1. FEMS Microbiology Letters, 1994, 120, 143-148.	1.8	65
72	Effects of Physicochemical Factors and Bacterial Colony Morphotype on Association of <i>Vibrio vulnificus</i> with Hemocytes of <i>Crassostrea virginica</i> Applied and Environmental Microbiology, 1993, 59, 1012-1017.	3.1	39

#	Article	IF	CITATIONS
73	A tissue culture assay for tetrodotoxin, saxitoxin and related toxins. Toxicon, 1988, 26, 191-197.	1.6	165
74	Environmental Influence on Activities and Foreign-Particle Binding by Hemocytes of American Oysters, Crassostrea virginica. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 1309-1315.	1.4	32
75	Diethylcarbamazine-Mediated Clearance of Brugia pahangi Microfilariae in Immunodeficient Nude Mice. American Journal of Tropical Medicine and Hygiene, 1985, 34, 476-483.	1.4	23