Feng-Ming Spring Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8450719/publications.pdf

Version: 2024-02-01

393 papers

11,343 citations

52 h-index 98 g-index

398 all docs

398 docs citations

times ranked

398

10676 citing authors

#	Article	IF	CITATIONS
1	Comparison of clinical outcome between stereotactic body radiotherapy and radiofrequency ablation for unresectable hepatocellular carcinoma. Medicine (United States), 2022, 101, e28545.	0.4	5
2	Early onset of severe lymphopenia during definitive radiotherapy correlates with mean body dose and predicts poor survival in cervical cancer. Cancer Biomarkers, 2022, 34, 149-159.	0.8	7
3	Real-World Practice of Hypofractionated Radiotherapy in Patients With Invasive Breast Cancer. Frontiers in Oncology, 2022, 12, 811794.	1.3	1
4	A Classifier for Improving Early Lung Cancer Diagnosis Incorporating Artificial Intelligence and Liquid Biopsy. Frontiers in Oncology, 2022, 12, 853801.	1.3	9
5	Radiation Induced Lymphopenia Is Associated With the Effective Dose to the Circulating Immune Cells in Breast Cancer. Frontiers in Oncology, 2022, 12, .	1.3	10
6	The role of stereotactic body radiotherapy in hepatocellular carcinoma: guidelines and evidences. Journal of the National Cancer Center, 2022, 2, 171-182.	3.0	3
7	Combined 18F-FDG and 11C-acetate positron emission tomography/computed tomography in staging and treatment decision in patients with hepatocellular carcinoma: A cost-effectiveness analysis Journal of Clinical Oncology, 2022, 40, e16176-e16176.	0.8	O
8	Antitumor activity of bintrafusp alfa in previously treated patients with recurrent or metastatic nasopharyngeal cancer (NPC): A single arm, prospective phase II trial Journal of Clinical Oncology, 2022, 40, e18029-e18029.	0.8	1
9	Sequential trans-arterial chemoembolization and stereotactic body radiotherapy followed by immunotherapy (START-FIT) for locally advanced hepatocellular carcinoma: A single-arm, phase II trial Journal of Clinical Oncology, 2022, 40, 4091-4091.	0.8	2
10	Real-world frequency of non-small cell lung cancer with ERBB2 exon 20 insertion (Exon20ins) mutations by site of insertion Journal of Clinical Oncology, 2022, 40, e15026-e15026.	0.8	0
11	Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. Journal of Hematology and Oncology, 2022, 15, .	6.9	58
12	Organs at Risk Considerations for Thoracic Stereotactic Body Radiation Therapy: What Is Safe for Lung Parenchyma?. International Journal of Radiation Oncology Biology Physics, 2021, 110, 172-187.	0.4	52
13	Local Control After Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2021, 110, 160-171.	0.4	32
14	Risk factors for symptomatic radiation pneumonitis after stereotactic body radiation therapy (SBRT) in patients with non-small cell lung cancer. Radiotherapy and Oncology, 2021, 156, 231-238.	0.3	26
15	Radiation-induced lung damage in patients treated with stereotactic body radiotherapy after EGFR-TKIs: is there any difference from stereotactic body radiotherapy alone?. Annals of Palliative Medicine, 2021, 10, 2832-2842.	0.5	6
16	Potential determinants of radiation-induced lymphocyte decrease and lymphopenia in breast cancer patients by machine learning approaches Journal of Clinical Oncology, 2021, 39, e12567-e12567.	0.8	0
17	Efficacy and pattern failures of early SBRT to primary tumor in advanced EGFR mutation lung cancer (Target-SBRT): A single-arm phase 2 study Journal of Clinical Oncology, 2021, 39, e21130-e21130.	0.8	O
18	An investigation on acquired mutations after TKI treatment in Chinese lung cancer patients Journal of Clinical Oncology, 2021, 39, e21162-e21162.	0.8	0

#	Article	IF	Citations
19	Association of IDO immune suppression with brain metastasis in non-small cell lung cancer Journal of Clinical Oncology, 2021, 39, e21215-e21215.	0.8	O
20	NRG-RTOG 1106/ACRIN 6697: A phase IIR trial of standard versus adaptive (mid-treatment PET-based) chemoradiotherapy for stage III NSCLC—Results and comparison to NRG-RTOG 0617 (non-personalized) Tj ETC	Qq00 0 80 rg	BT 10 verlock 1
21	Individualized Nomogram for Predicting Survival in Patients with Brain Metastases After Stereotactic Radiosurgery Utilizing Driver Gene Mutations and Volumetric Surrogates. Frontiers in Oncology, 2021, 11, 659538.	1.3	5
22	Deep learning survival model on transcriptomes level in patients with non-small cell lung cancer Journal of Clinical Oncology, 2021, 39, e20518-e20518.	0.8	O
23	Circulating immune markers predict the therapeutic effect in primary lung cancer Journal of Clinical Oncology, 2021, 39, e21203-e21203.	0.8	O
24	Significance of radiation esophagitis: Conditional survival assessment in patients with non-small cell lung cancer. Journal of the National Cancer Center, 2021, 1, 31-38.	3.0	1
25	Genetic Variations in the Transforming Growth Factor- \hat{l}^21 Pathway May Improve Predictive Power for Overall Survival in Non-small Cell Lung Cancer. Frontiers in Oncology, 2021, 11, 599719.	1.3	4
26	Risk factors for radiation induced lymphopenia in patients with breast cancer receiving adjuvant radiotherapy. Annals of Translational Medicine, 2021, 9, 1288-1288.	0.7	13
27	Chemotherapy is a risk factor of lymphopenia before adjuvant radiotherapy in breast cancer. Cancer Reports, 2021, , e1525.	0.6	4
28	Impact of effective dose to immune cells (EDIC) on lymphocyte nadir and survival in limited-stage SCLC. Radiotherapy and Oncology, 2021, 162, 26-33.	0.3	10
29	Effect of bladder volume on radiation doses to organs at risk and tumor in cervical cancer during imageâ€'guided adaptive brachytherapy and treatment outcome analysis. Molecular and Clinical Oncology, 2021, 15, 258.	0.4	O
30	Multiâ€Contrast Fourâ€dimensional Magnetic Resonance Imaging (MCâ€4Dâ€MRI): development and initial evaluation in liver tumor patients. Medical Physics, 2021, 48, 7984.	1.6	5
31	Higher Radiation Dose to the Immune Cells Correlates with Worse Tumor Control and Overall Survival in Patients with Stage III NSCLC: A Secondary Analysis of RTOG0617. Cancers, 2021, 13, 6193.	1.7	39
32	Combined Stereotactic Body Radiotherapy and Immunotherapy Versus Transarterial Chemoembolization in Locally Advanced Hepatocellular Carcinoma: A Propensity Score Matching Analysis. Frontiers in Oncology, 2021, 11, 798832.	1.3	16
33	Prognostic Role of Soluble Programmed Death Ligand 1 in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 2021, 11, 774131.	1.3	13
34	A Validation Study on IDO Immune Biomarkers for Survival Prediction in Non–Small Cell Lung Cancer: Radiation Dose Fractionation Effect in Early-Stage Disease. Clinical Cancer Research, 2020, 26, 282-289.	3.2	19
35	Radiation Therapy for Thoracic Malignancies. Hematology/Oncology Clinics of North America, 2020, 34, 109-125.	0.9	7
36	A framework for modeling radiation induced lymphopenia in radiotherapy. Radiotherapy and Oncology, 2020, 144, 105-113.	0.3	26

#	Article	IF	CITATIONS
37	Predicting liver and lung metastasis in esophageal cancer: does the site of primary tumor really matter?. Journal of Thoracic Disease, 2020, 12, 2996-2999.	0.6	2
38	Intermediate Dose-Volume Parameters, Not Low-Dose Bath, Is Superior to Predict Radiation Pneumonitis for Lung Cancer Treated With Intensity-Modulated Radiotherapy. Frontiers in Oncology, 2020, 10, 584756.	1.3	8
39	Central Airway Toxicity After High Dose Radiation: A Combined Analysis of Prospective Clinical Trials for Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, 587-596.	0.4	8
40	A Case Report of an Early Response to Definitive Chemoradiation for Esophageal Carcinoma Cuniculatum. Case Reports in Oncological Medicine, 2020, 2020, 1-6.	0.2	0
41	Lymphopenia and Radiation Dose to Circulating Lymphocytes With Neoadjuvant Chemoradiation in Esophageal Squamous Cell Carcinoma. Advances in Radiation Oncology, 2020, 5, 880-888.	0.6	35
42	The impact of the effective dose to immune cells on lymphopenia and survival of esophageal cancer after chemoradiotherapy. Radiotherapy and Oncology, 2020, 146, 180-186.	0.3	54
43	Weighted-Support Vector Machine Learning Classifier of Circulating Cytokine Biomarkers to Predict Radiation-Induced Lung Fibrosis in Non-Small-Cell Lung Cancer Patients. Frontiers in Oncology, 2020, 10, 601979.	1.3	7
44	Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect?. Radiotherapy and Oncology, 2020, 149, 55-62.	0.3	84
45	Patterns of thyroid dysfunctions during treatment with immune checkpoint inhibitors (ICI) in 59 solid cancer patients Journal of Clinical Oncology, 2020, 38, e18567-e18567.	0.8	2
46	Pre-radiotherapy lymphocyte count and platelet-to-lymphocyte ratio may improve survival prediction beyond clinical factors in limited stage small cell lung cancer: model development and validation. Translational Lung Cancer Research, 2020, 9, 2315-2327.	1.3	8
47	Depression in women breast cancer patients receiving radiation therapy: A pilot study Journal of Clinical Oncology, 2020, 38, e12546-e12546.	0.8	O
48	Deep learning to develop transcriptomic model for survival prediction in TCGA patients with hepatocellular carcinoma Journal of Clinical Oncology, 2020, 38, e14057-e14057.	0.8	1
49	Does radiation increase the risk of immunotherapy related pneumonitis in cancer patients with thorax radiotherapy combined immune checkpoint inhibitors: A meta-analysis Journal of Clinical Oncology, 2020, 38, e15099-e15099.	0.8	4
50	Assessment of patient-reported outcomes in patients treated with radiation therapy to brain malignant tumors Journal of Clinical Oncology, 2020, 38, e14521-e14521.	0.8	1
51	Changes of plasma GARP-LTGF \hat{l}^21 complex during chemoradiotherapy may predict survival in non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2020, 38, e21042-e21042.	0.8	0
52	Association between homologous recombination deficiency and tumor mutational burden in lung cancer Journal of Clinical Oncology, 2020, 38, e21043-e21043.	0.8	3
53	Why aren't we getting consistent results for heart dose and mortality during thoracic radiotherapy?. Annals of Translational Medicine, 2020, 8, 1252.	0.7	O
54	Why aren't we getting consistent results for heart dose and mortality during thoracic radiotherapy?. Annals of Translational Medicine, 2020, 8, 1252-1252.	0.7	2

#	Article	IF	CITATIONS
55	Risk Factors Associated with Lymphocyte Reduction during Radiotherapy in Patients with Limited Stage Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, E550-E551.	0.4	O
56	Interplay of Cardiac and Pulmonary Toxicity: An Analysis of Prospective Trials for Locally Advanced Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, E504.	0.4	0
57	Stereotactic body radiotherapy in patients with multiple lung tumors: a focus on lung dosimetric constraints. Expert Review of Anticancer Therapy, 2019, 19, 959-969.	1.1	7
58	Combined Stereotactic Body Radiotherapy and Checkpoint Inhibition in Unresectable Hepatocellular Carcinoma: A Potential Synergistic Treatment Strategy. Frontiers in Oncology, 2019, 9, 1157.	1.3	75
59	Radiation Induced Lymphopenia and Overall Survival in Patients with Limited Stage Small Cell Lung Cancer Receiving Definitive Chemoradiation. International Journal of Radiation Oncology Biology Physics, 2019, 105, E550.	0.4	O
60	The Effect of Thoracic Radiation Therapy on Overall Survival in SCLC: Findings from the National Cancer Database. International Journal of Radiation Oncology Biology Physics, 2019, 105, E549-E550.	0.4	O
61	The Effect of Bladder Volume on RT Dosimetry during Multiple Sessions of Intracavitary Brachytherapy for Cervical Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, E341-E342.	0.4	O
62	A Potential Survival Impact of Blood Immune Cells in Patients with Cervical Carcinoma Treated with Concurrent Chemoradiotherapy. International Journal of Radiation Oncology Biology Physics, 2019, 105, E343.	0.4	0
63	Effective Dose to Lymphocytes Predicts Lymphopenia and May Predict Survival in Patients Treated with CROSS Regimen in Patients with Squamous Cell Carcinoma of Esophagus. International Journal of Radiation Oncology Biology Physics, 2019, 105, E198-E199.	0.4	O
64	Predictors of Failure and Survival in Patients with Hepatocellular Carcinoma Treated with Stereotactic Body Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2019, 105, E212-E213.	0.4	0
65	Changes in Liver Function after Functional Liver Image-Guided Hepatic Therapy (FLIGHT) as Assessed by Hepabobiliary Iminodiacetic Acid Scans. International Journal of Radiation Oncology Biology Physics, 2019, 105, S59.	0.4	1
66	Modern Radiation Further Improves Survival in Non-Small Cell Lung Cancer: An Analysis of 288,670 Patients. Journal of Cancer, 2019, 10, 168-177.	1.2	26
67	Association of Twice-Daily Radiotherapy With Subsequent Brain Metastases in Adults With Small Cell Lung Cancer. JAMA Network Open, 2019, 2, e190103.	2.8	18
68	Machine Learning to Build and Validate a Model for Radiation Pneumonitis Prediction in Patients with Non–Small Cell Lung Cancer. Clinical Cancer Research, 2019, 25, 4343-4350.	3.2	16
69	Circulating microRNAs as biomarkers of radiation-induced cardiac toxicity in non-small-cell lung cancer. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1635-1643.	1.2	24
70	Chest Wall Toxicity After Stereotactic Body Radiation Therapy: A Pooled Analysis of 57 Studies. International Journal of Radiation Oncology Biology Physics, 2019, 103, 843-850.	0.4	29
71	An in-silico quality assurance study of contouring target volumes in thoracic tumors within a cooperative group setting. Clinical and Translational Radiation Oncology, 2019, 15, 83-92.	0.9	4
72	P1.03-17 Function of Antisense LncRNA RP11-539E17.5 and FAM83A-AS1 Up-Regulating FAM83A in Lung Adenocarcinoma Tumorigenesis and Development. Journal of Thoracic Oncology, 2019, 14, S424.	0.5	1

#	Article	IF	Citations
73	P1.14-40 EGFR-TKIs May Sensitize Radiation Lung Damage in Stereotactic Body Radiotherapy Based on Intensity Analyzing. Journal of Thoracic Oncology, 2019, 14, S570.	0.5	O
74	P1.18-15 Dosimetric and Toxicity Benefits of Adaptive IMRT in Patients with Stage III Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S632.	0.5	0
7 5	P2.03-05 PHLPP1 Expression Through AKT and ERK Dual Signaling Pathways May Slow Down the Resistance to TKI in EGFR-Mutated Lung Adenocarcinoma. Journal of Thoracic Oncology, 2019, 14, S684.	0.5	O
76	OA06.07 Discrimination of Lung Invasive Adenocarcinoma with Micropapillary Pattern Based on CT Radiomics. Journal of Thoracic Oncology, 2019, 14, S222.	0.5	1
77	P1.16-24 Detection of Plasma T790M Mutation After the First Generation EGFR-TKI Resistance of Non-Small Cell Lung Cancer in the Real World. Journal of Thoracic Oncology, 2019, 14, S595-S596.	0.5	O
78	EP1.17-35 CBCT Radiomics May Predict Short-Term SBRT Effect in Early Stage Lung Cancer Patients. Journal of Thoracic Oncology, 2019, 14, S1096.	0.5	O
79	JCSE01.17 Modelling the Immunosuppressive Difference of SBRT and CRT by Simulating the Dose to Circulating Lymphocytes in Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S131.	0.5	O
80	P1.01-90 Update Phase II Results of Early Primary Tumor Stereotactic Body Radiotherapy Combined with First-Line EGFR-TKI in Advanced EGFR Mutated NSCLC. Journal of Thoracic Oncology, 2019, 14, S395-S396.	0.5	0
81	P2.12-03 Building and Validating a Lymphocyte Nadir Based Model to Predict Survival in Patients with Limited Stage-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S813.	0.5	1
82	P2.12-08 Surprisingly Promising Tumor Control Rate of S1 Combination with Anlotinib with Refractory Relapsed SCLC Who Failed ≥ 2 Lines Chemotherapy. Journal of Thoracic Oncology, 2019, 14, S815.	0.5	0
83	P1.04-69 Modelling the Immunosuppressive Difference of SBRT and CRT by Simulating the Dose to Circulating Lymphocytes in Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S468.	0.5	O
84	Pretreatment PET/CT imaging of angiogenesis based on 18F-RGD tracer uptake may predict antiangiogenic response. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 940-947.	3.3	23
85	Doses of radiation to the pericardium, instead of heart, are significant for survival in patients with non-small cell lung cancer. Radiotherapy and Oncology, 2019, 133, 213-219.	0.3	29
86	Predictors of Nodal and Metastatic Failure in Early Stage Non–small-cell Lung Cancer After Stereotactic Body Radiation Therapy. Clinical Lung Cancer, 2019, 20, 186-193.e3.	1.1	3
87	Greater reduction in mid-treatment FDG-PET volume may be associated with worse survival in non-small cell lung cancer. Radiotherapy and Oncology, 2019, 132, 241-249.	0.3	20
88	Development of a Fully Cross-Validated Bayesian Network Approach for Local Control Prediction in Lung Cancer. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 232-241.	2.7	42
89	Coexpression patterns of IDO-1, PD-L1 and EGFR in non-small cell lung cancer Journal of Clinical Oncology, 2019, 37, e14279-e14279.	0.8	2
90	Prospective trial of functional liver image-guided hepatic therapy (FLIGHT) with hepatobiliary iminodiacetic acid (HIDA) scans and update of institutional experience Journal of Clinical Oncology, 2019, 37, 373-373.	0.8	2

#	Article	IF	Citations
91	Utilization of a hybrid finite-element based registration method to quantify heterogeneous tumor response for adaptive treatment for lung cancer patients. Physics in Medicine and Biology, 2018, 63, 065017.	1.6	10
92	Prediction of Radiation Esophagitis in Non–Small Cell Lung Cancer Using Clinical Factors, Dosimetric Parameters, and Pretreatment Cytokine Levels. Translational Oncology, 2018, 11, 102-108.	1.7	10
93	A novel receptorâ€like kinase involved in fungal pathogen defence in Arabidopsis thaliana. Journal of Phytopathology, 2018, 166, 506-515.	0.5	3
94	Physician Bias in Prophylactic Cranial Irradiation Decision Making—An Opportunity for a Patient Decision Aid. Clinical Lung Cancer, 2018, 19, 476-483.	1.1	3
95	A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer. Radiotherapy and Oncology, 2018, 126, 506-510.	0.3	10
96	Serum MicroRNA Signature Predicts Response to High-Dose Radiation Therapy in Locally Advanced Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 100, 107-114.	0.4	28
97	Positron Emission Tomography Imaging of Lung Cancer. , 2018, , 219-232.e4.		O
98	Patient Selection for Radiotherapy. , 2018, , 337-341.e3.		1
99	IDO Immune Status after Chemoradiation May Predict Survival in Lung Cancer Patients. Cancer Research, 2018, 78, 809-816.	0.4	57
100	Predictors of Nodal And Metastatic Failure in Early Stage Non-Small Cell Lung Cancer after Stereotactic Body Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 102, e676.	0.4	0
101	NTCP Model for Radiation Pneumonitis after Stereotactic Body Radiation Therapy in Non-Small Cell Lung Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2018, 102, e716-e717.	0.4	1
102	What Happens When Proton Meets Randomization: Is There a Future for Proton Therapy?. Journal of Clinical Oncology, 2018, 36, 1777-1779.	0.8	9
103	Reply to Z. Liao et al and R. Rengan et al. Journal of Clinical Oncology, 2018, 36, 2005-2006.	0.8	1
104	Stereotactic body radiotherapy as salvage treatment for recurrence of non-small cell lung cancer after prior surgery or radiotherapy. Translational Lung Cancer Research, 2018, 8, 78-87.	1.3	19
105	MS12.02 Clinical Data Available. Journal of Thoracic Oncology, 2018, 13, S267.	0.5	O
106	Comparison of predictive powers of functional and anatomic dosimetric parameters for radiation-induced lung toxicity in locally advanced non-small cell lung cancer. Radiotherapy and Oncology, 2018, 129, 242-248.	0.3	12
107	Review of thoracic reirradiation with stereotactic body radiation therapy. Practical Radiation Oncology, 2018, 8, 251-265.	1.1	15
108	Functional liver image guided hepatic therapy (FLIGHT) with hepatobiliary iminodiacetic acid (HIDA) scans. Practical Radiation Oncology, 2018, 8, 429-436.	1.1	8

#	Article	IF	CITATIONS
109	Modeling Patient-Specific Dose-Function Response for Enhanced Characterization of Personalized Functional Damage. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1265-1275.	0.4	5
110	Histology, Tumor Volume, and Radiation Dose Predict Outcomes in NSCLC Patients After Stereotactic Ablative Radiotherapy. Journal of Thoracic Oncology, 2018, 13, 1549-1559.	0.5	31
111	A multiobjective Bayesian networks approach for joint prediction of tumor local control and radiation pneumonitis in nonsmallâ€cell lung cancer (⟨scp⟩NSCLC⟨ scp⟩) for responseâ€adapted radiotherapy. Medical Physics, 2018, 45, 3980-3995.	1.6	43
112	Long-term survival comparison of stereotactic radiotherapy versus surgery for elderly patients with clinical stage T1-T2 non-small cell lung cancer Journal of Clinical Oncology, 2018, 36, 8511-8511.	0.8	1
113	Long-term survival after salvage SBRT for recurrent or secondary non-small cell lung cancer after prior surgery or radiation therapy Journal of Clinical Oncology, 2018, 36, 8558-8558.	0.8	2
114	Kinetics and dosimetric predictors of acute radiation-induced lymphopenia in pancreatic cancer Journal of Clinical Oncology, 2018, 36, 300-300.	0.8	3
115	Potential risk factors of pneumonitis associated with consolidation pembrolizumab after chemoradiation in unresectable NSCLC patients Journal of Clinical Oncology, 2018, 36, 167-167.	0.8	O
116	Effect of radiation dose escalation on outcomes in patients with N2 stage IIIA NSCLC undergoing induction therapy prior to surgical resection Journal of Clinical Oncology, 2018, 36, 8513-8513.	0.8	0
117	The effect of thoracic radiation on overall survival and their association with systemic immune therapy in stage IV NSCLC: Findings from the National Cancer Database Journal of Clinical Oncology, 2018, 36, 9103-9103.	0.8	1
118	Racial disparities in non-small cell lung cancer, analysis of the Indiana University Cancer Center registry database 2000-2015 Journal of Clinical Oncology, 2018, 36, e18622-e18622.	0.8	1
119	Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis. Radiotherapy and Oncology, 2017, 123, 85-92.	0.3	50
120	Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography. International Journal of Radiation Oncology Biology Physics, 2017, 98, 463-472.	0.4	19
121	Survival impact of postoperative therapy modalities according to margin status in non–small cell lung cancer patients in the United States. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 661-672.e10.	0.4	31
122	Neoadjuvant twice daily chemoradiotherapy for esophageal cancer: Treatment-related mortality and long-term outcomes. Advances in Radiation Oncology, 2017, 2, 308-315.	0.6	0
123	Effect of Midtreatment PET/CT-Adapted Radiation Therapy With Concurrent Chemotherapy in Patients With Locally Advanced Non–Small-Cell Lung Cancer. JAMA Oncology, 2017, 3, 1358.	3.4	177
124	Individualizing Radiation Dose in Locally Advanced Non–Small Cell Lung Cancer Patients Using Pretreatment Serum MicroRNA Signatures. International Journal of Radiation Oncology Biology Physics, 2017, 98, 222.	0.4	1
125	Hyperfractionated Accelerated Radiation Therapy May Increase Risk for Brain Metastases in Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 98, 244.	0.4	1
126	Lower Incidence of Esophagitis in the Elderly Undergoing Definitive Radiation Therapy for Lung Cancer. Journal of Thoracic Oncology, 2017, 12, 539-546.	0.5	12

#	Article	IF	Citations
127	Plasma Levels of IL-8 and TGF- \hat{l}^2 1 Predict Radiation-Induced Lung Toxicity in Non-Small Cell Lung Cancer: A Validation Study. International Journal of Radiation Oncology Biology Physics, 2017, 98, 615-621.	0.4	48
128	Patterns of Treatment and Outcomes for Definitive Therapy of Early Stage Non-Small Cell Lung Cancer. Annals of Thoracic Surgery, 2017, 104, 1881-1888.	0.7	17
129	Chest Wall Toxicity After Stereotactic Body Radiation Therapy for NSCLC: A Pooled Analysis of 57 Studies. International Journal of Radiation Oncology Biology Physics, 2017, 99, E457-E458.	0.4	0
130	Radiation-induced lung toxicity in non-small-cell lung cancer: Understanding the interactions of clinical factors and cytokines with the dose-toxicity relationship. Radiotherapy and Oncology, 2017, 125, 66-72.	0.3	14
131	Predictors of Long-Term Survival Among Locally Advanced Non–small Cell Lung Cancer Patients Undergoing Definitive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, E441.	0.4	O
132	Optimizing Cardiac Medications in Patients with Locally Advanced Non–Small Cell Lung Cancer Undergoing Definitive Radiation. International Journal of Radiation Oncology Biology Physics, 2017, 99, E462.	0.4	3
133	Investigation of Heterogeneous Tumor Response in Adaptive Radiation Therapy for Patients With Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, E495.	0.4	O
134	Lower Incidence of Radiation Induced Esophagitis in the Elderly: Role of Cytokines. International Journal of Radiation Oncology Biology Physics, 2017, 99, E496-E497.	0.4	0
135	Clinical Dose-Volume Histogram Analysis for Radiation-Induced Proximal Bronchial Tree Toxicity in Patients With Non–small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, E501.	0.4	O
136	Factors Associated With Survival in Patients With Non–small Cell Lung Cancer from a Single Institution Study of 3569 Patients. International Journal of Radiation Oncology Biology Physics, 2017, 99, E508-E509.	0.4	0
137	Esophageal Dose, Clinical Factors, and Cytokines: Predicting Radiation-Induced Esophagitis in Nonâ€'small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, E595.	0.4	0
138	Cardiac Events and Definitive Radiation Therapy for Locally Advanced Non–small Cell Lung Cancer: A Focus on Patients Without Baseline Coronary Artery Disease. International Journal of Radiation Oncology Biology Physics, 2017, 99, S152-S153.	0.4	0
139	Histology Predicts for Failure in Non-small Cell Lung Cancer Patients after Stereotactic Ablative Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, S240-S241.	0.4	O
140	Influence of Tumor Locations on the Survival of Patients with Esophageal Squamous Cell Carcinoma. International Journal of Radiation Oncology Biology Physics, 2017, 99, E133.	0.4	0
141	Higher Radiation Dose to Immune System is Correlated With Poorer Survival in Patients With Stage III Non–small Cell Lung Cancer: A Secondary Study of a Phase 3 Cooperative Group Trial (NRG Oncology) Tj ETQq1	b . a .7843	1445rgBT /Ovi
142	Lower Incidence of Esophagitis in the Elderly Undergoing Definitive Radiation Therapy for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 98, 247-248.	0.4	0
143	Can radiotherapy potentiate the effectiveness of immune checkpoint inhibitors in lung cancer?. Future Oncology, 2017, 13, 2503-2505.	1.1	10
144	Tumor control probability modeling for stereotactic body radiation therapy of early-stage lung cancer using multiple bio-physical models. Radiotherapy and Oncology, 2017, 122, 286-294.	0.3	44

#	Article	IF	CITATIONS
145	Whole body metabolic tumor volume is a prognostic marker in patients with newly diagnosed stage 3B non-small cell lung cancer, confirmed with external validation. European Journal of Hybrid Imaging, 2017, 1, 8.	0.6	4
146	OA02.03 Potential Predictors of Pembrolizumab Associated Pneumonitis: A Retrospective Review of the HCRN LUN 14-179 Trial. Journal of Thoracic Oncology, 2017, 12, S1552.	0.5	0
147	Endoscopic Approach to Remove Intra-extracranial Tumors in Various Skull Base Regions. Chinese Medical Journal, 2017, 130, 2933-2940.	0.9	4
148	Principal component analysis identifies patterns of cytokine expression in non-small cell lung cancer patients undergoing definitive radiation therapy. PLoS ONE, 2017, 12, e0183239.	1.1	11
149	Cardiac Events After Radiation Therapy: Combined Analysis of Prospective Multicenter Trials for Locally Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2017, 35, 1395-1402.	0.8	283
150	Anatomic, functional and molecular imaging in lung cancer precision radiation therapy: treatment response assessment and radiation therapy personalization. Translational Lung Cancer Research, 2017, 6, 670-688.	1.3	18
151	Potential future consideration for imaging and blood-based biomarkers for precision medicine in lung cancer. Translational Lung Cancer Research, 2017, 6, 713-715.	1.3	3
152	Blood-based biomarkers for precision medicine in lung cancer: precision radiation therapy. Translational Lung Cancer Research, 2017, 6, 661-669.	1.3	10
153	Ensuring sample quality for blood biomarker studies in clinical trials: a multicenter international study for plasma and serum sample preparation. Translational Lung Cancer Research, 2017, 6, 625-634.	1.3	18
154	Thoracic radiation-induced pleural effusion and risk factors in patients with lung cancer. Oncotarget, 2017, 8, 97623-97632.	0.8	16
155	Concurrent brain radiotherapy and EGFR-TKI may improve intracranial metastases control in non-small cell lung cancer and have survival benefit in patients with low DS-GPA score. Oncotarget, 2017, 8, 111309-111317.	0.8	22
156	Postoperative radiation for tumor control and overall survival in thymic epithelial tumors (TET): A matched-pair analysis Journal of Clinical Oncology, 2017, 35, 8572-8572.	0.8	0
157	Paraneoplastic syndrome and survival in thymic epithelial tumors (TET): The Indiana University experience Journal of Clinical Oncology, 2017, 35, 8574-8574.	0.8	O
158	Survival in patients with hepatocellular carcinoma (HCC): A report of 1444 patients treated within a multidisciplinary program Journal of Clinical Oncology, 2017, 35, e15652-e15652.	0.8	1
159	Stereotactic body radiation therapy to generate comparable survival to surgery in treating hepatocellular carcinoma (HCC): Results of 756 patients Journal of Clinical Oncology, 2017, 35, 4080-4080.	0.8	1
160	Rebuttal from Prof. Kong and Dr. Rabatic. Translational Lung Cancer Research, 2016, 5, 198-200.	1.3	0
161	Pros: concurrent chemo-radiotherapy remains the ideal treatment in fit patients with large volume unresectable stage III non-small cell lung cancer. Translational Lung Cancer Research, 2016, 5, 190-194.	1.3	3
162	Priority-driven plan optimization in locally advanced lung patients based on perfusion SPECT imaging. Advances in Radiation Oncology, 2016, 1, 281-289.	0.6	10

#	Article	IF	CITATIONS
163	Simple Factors Associated With Radiation-Induced Lung Toxicity After Stereotactic Body Radiation Therapy of the Thorax: A Pooled Analysis of 88 Studies. International Journal of Radiation Oncology Biology Physics, 2016, 95, 1357-1366.	0.4	134
164	Trends in Utilization of Radiation in the Treatment of Pediatric Hodgkin Lymphoma. International Journal of Radiation Oncology Biology Physics, 2016, 96, E553.	0.4	0
165	Cytokine Signature During Early Treatment May Predict Midtreatment Positron Emission Tomography/Computed Tomography and Survival in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 96, E477.	0.4	O
166	Combined Stereotactic Body Radiation Therapy and Immunotherapy on 4T1 Triple-Negative Breast Cancer Murine Model. International Journal of Radiation Oncology Biology Physics, 2016, 96, E583.	0.4	1
167	Risk Factors for Noncancer Progression–Associated Death in Patients With Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 96, E487-E488.	0.4	O
168	A Prognostic Model Combining Genetic Variations in the Transforming Growth Factor-Beta 1 Pathway and Clinical Factors for Non-Small Cell Lung Cancer After Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, E667.	0.4	0
169	Comparison of the Effectiveness of Radiofrequency Ablation With Stereotactic Body Radiation Therapy in Inoperable Stage I Non-Small Cell Lung Cancer: A Systemic Review and Pooled Analysis. International Journal of Radiation Oncology Biology Physics, 2016, 95, 1378-1390.	0.4	83
170	Normalized Median Geodesic Distance, a Novel Shape Descriptor, Predicts Survival in Non-Small Cell Lung Cancer After Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, S194.	0.4	0
171	Review of evolving etiologies, implications and treatment strategies for the superior vena cava syndrome. SpringerPlus, 2016, 5, 229.	1.2	105
172	How Will Big Data Improve Clinical and Basic Research in Radiation Therapy?. International Journal of Radiation Oncology Biology Physics, 2016, 95, 895-904.	0.4	25
173	Personalized Radiation Therapy (PRT) for Lung Cancer. Advances in Experimental Medicine and Biology, 2016, 890, 175-202.	0.8	9
174	Mediastinal germ cell tumors and development of secondary leukemia and solid tumors Journal of Clinical Oncology, 2016, 34, e16043-e16043.	0.8	1
175	Treatment-Related Death during Concurrent Chemoradiotherapy for Locally Advanced Non-Small Cell Lung Cancer: A Meta-Analysis of Randomized Studies. PLoS ONE, 2016, 11, e0157455.	1.1	10
176	NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression. Oncotarget, 2016, 7, 23395-23415.	0.8	12
177	Chemotherapy-related qualitative, quantitative, anatomic and volumetric changes of the major salivary glands during concurrent head and neck therapy Journal of Clinical Oncology, 2016, 34, e17522-e17522.	0.8	0
178	Factors associated with secondary malignancy in pediatric Hodgkin's lymphoma Journal of Clinical Oncology, 2016, 34, 10538-10538.	0.8	0
179	Renal cell carcinoma: The effect of targeted therapies on clear cell and non-clear cell histologies Journal of Clinical Oncology, 2016, 34, e16077-e16077.	0.8	0
180	Impact of health disparities on outcomes: Do black women with inflammatory breast cancer require individualized treatment intensification?. Journal of Clinical Oncology, 2016, 34, e18075-e18075.	0.8	0

#	Article	IF	Citations
181	TU-AB-202-07: A Novel Method for Registration of Mid-Treatment PET/CT Images Under Conditions of Tumor Regression for Patients with Locally Advanced Lung Cancers. Medical Physics, 2016, 43, 3738-3738.	1.6	0
182	SPECT-CT Ventilation and Perfusion Changes During and 3 Months After Lung SBRT. International Journal of Radiation Oncology Biology Physics, 2015, 93, S86.	0.4	0
183	Baseline Plasma Proteomic Analysis to Identify Glycoproteins for Prediction of Radiation Induced Lung Toxicity in Patients With Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2015, 93, S151-S152.	0.4	0
184	A Novel Radiation Esophagitis Predictive Model With IL-8, Dosimetric and Clinical Factors for Non-Small Cell Lung Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2015, 93, E430.	0.4	0
185	Changes in Circulating Cytokines and Thymic T-Cells After Total Body and Partial-Body (Right) Tj ETQq1 1 0.78431-2015, 93, E530.	.4 rgBT /O\ 0.4	verlock 10⊤ O
186	Principal Component Analysis of Plasma Cytokine Changes During Hypofractionated SBRT in Patients With Non-Small Cell Lung Cancer: Is There a Difference From Conventionally Fractionated Radiation?. International Journal of Radiation Oncology Biology Physics, 2015, 93, E541.	0.4	0
187	Small Cell Versus Non-Small Cell Lung Cancer: Survival Difference in 1428 Patients From a Single-Institution. International Journal of Radiation Oncology Biology Physics, 2015, 93, E412.	0.4	O
188	Metabolic response assessment with 18F-FDG PET/CT: inter-method comparison and prognostic significance for patients with non-small cell lung cancer. Journal of Radiation Oncology, 2015, 4, 249-256.	0.7	12
189	Radiation dose-fractionation effects in spinal cord: comparison of animal and human data. Journal of Radiation Oncology, 2015, 4, 225-233.	0.7	6
190	Nondosimetric Risk Factors for Radiation-Induced Lung Toxicity. Seminars in Radiation Oncology, 2015, 25, 100-109.	1.0	110
191	A Phase II Study of Induction Chemotherapy Followed by Thoracic Radiotherapy and Erlotinib in Poor-Risk Stage III Non–Small-Cell Lung Cancer: Results of CALGB 30605 (Alliance)/RTOG 0972 (NRG). Journal of Thoracic Oncology, 2015, 10, 143-147.	0.5	53
192	Use a survival model to correlate single-nucleotide polymorphisms of DNA repair genes with radiation dose–response in patients with non-small cell lung cancer. Radiotherapy and Oncology, 2015, 117, 77-82.	0.3	15
193	A MLC-based inversely optimized 3D spatially fractionated grid radiotherapy technique. Radiotherapy and Oncology, 2015, 117, 483-486.	0.3	23
194	The Plasma Concentration of Epidermal Growth Factor Receptor (EGFR) and Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) Patients. International Journal of Radiation Oncology Biology Physics, 2015, 93, E445.	0.4	0
195	A Novel Radiation Pneumonitis Predictive Model With MLD and IL-8 for Non-Small Cell Lung Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2015, 93, S153.	0.4	1
196	No Significant Difference in Overall Survival between Caucasian and African Americans Patient With Prostate Cancer: An Analysis of 1338 Patients From a Single Institution. International Journal of Radiation Oncology Biology Physics, 2015, 93, E244.	0.4	0
197	Contouring variations and the role of atlas in non-small cell lung cancer radiation therapy: Analysis of a multi-institutional preclinical trial planning study. Practical Radiation Oncology, 2015, 5, e67-e75.	1.1	33
198	THâ€ABâ€304â€07: A Twoâ€Stage Signatureâ€Based Data Fusion Mechanism to Predict Radiation Pneumonitis in Patients with Nonâ€Smallâ€Cell Lung Cancer (NSCLC). Medical Physics, 2015, 42, 3702-3702.	1.6	4

#	Article	IF	Citations
199	IT-36 * PHASE 1/2 STUDY OF THE COMBINATION OF INDOXIMOD AND TEMOZOLOMIDE FOR ADULT PATIENTS WITH TEMOZOLOMIDE-REFRACTORY PRIMARY MALIGNANT BRAIN TUMORS. Neuro-Oncology, 2014, 16, $v117-v118$.	0.6	1
200	ACR Appropriateness Criteria® Early-Stage Non–Small–Cell Lung Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2014, 37, 201-207.	0.6	18
201	Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2014, 89, 145-151.	0.4	30
202	A Blood Biomarker Dependent Survival Model for NSCLC Patients Treated With Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 90, S18.	0.4	1
203	A Blood Biomarker Dependent Survival Model for NSCLC Patients Treated With Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 90, S77.	0.4	O
204	Simple Clinical Factors Associated With Radiation-Induced Lung Toxicity After Stereotactic Body Radiation Therapy in Lung Cancer: A Pooled Analysis of 70 Studies. International Journal of Radiation Oncology Biology Physics, 2014, 90, S60.	0.4	2
205	Relationship of Dose and TCP for SBRT of Lung Cancer as Analyzed From a Pooled 118 Studies Using a New Radiobiological Model. International Journal of Radiation Oncology Biology Physics, 2014, 90, S189-S190.	0.4	O
206	Low Baseline Lymphocyte Count May Predict Poorer Overall Survival in Patients With Head and Neck Cancer Treated With Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 90, S573.	0.4	1
207	Neoadjuvant Twice Daily Chemoradiation Therapy for Esophageal Cancer: Treatment Related Mortality and Long-Term Outcomes. International Journal of Radiation Oncology Biology Physics, 2014, 90, S11.	0.4	O
208	Lewis Lung Cancer Tumor Growth Inhibition by Disruption of Transforming Growth Factor Beta (TGF-Î ² 1) Pathway in Murine Model. International Journal of Radiation Oncology Biology Physics, 2014, 90, S78.	0.4	0
209	Survival Outcome After Stereotactic Body Radiation Therapy and Surgery for Stage I Non-Small Cell Lung Cancer: A Meta-Analysis. International Journal of Radiation Oncology Biology Physics, 2014, 90, 603-611.	0.4	230
210	Investigation Into a New Quality Assurance Tool for Radiation Therapy Structure Delineation: Atlas-Based Automatic Segmentation (ABAS) of Cardiac Structures for Non-Small Cell Lung Cancer From RTOG 0617. International Journal of Radiation Oncology Biology Physics, 2014, 90, S735.	0.4	0
211	Pulmonary Artery Invasion, High-Dose Radiation, and Overall Survival in Patients With Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2014, 89, 313-321.	0.4	22
212	Patterns of practice in radiation therapy for non-small cell lung cancer among members of the American Society for Radiation Oncology. Practical Radiation Oncology, 2014, 4, e133-e141.	1.1	16
213	Timing and intensity of changes in FDG uptake with symptomatic esophagitis during radiotherapy or chemo-radiotherapy. Radiation Oncology, 2014, 9, 37.	1.2	22
214	Personalized dose selection in radiation therapy using statistical models for toxicity and efficacy with dose and biomarkers as covariates. Statistics in Medicine, 2014, 33, 5330-5339.	0.8	10
215	Resection of the Intracavernous Sinus Tumors Using a Purely Endoscopic Endonasal Approach. Journal of Craniofacial Surgery, 2014, 25, 295-302.	0.3	10
216	SU-E-T-166: Evaluation of Integral Dose in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Head and Neck Cancer Patient. Medical Physics, 2014, 41, 260-261.	1.6	1

#	Article	IF	CITATIONS
217	Radiation dose effect in locally advanced non-small cell lung cancer. Journal of Thoracic Disease, 2014, 6, 336-47.	0.6	41
218	Combining radiotherapy and immunotherapy in the treatment of advanced cancer: A limited meta-analysis Journal of Clinical Oncology, 2014, 32, 3110-3110.	0.8	0
219	TU-A-BRD-01: Outcomes of Hypofractionated Treatments - Initial Results of the WGSBRT. Medical Physics, 2014, 41, 445-446.	1.6	О
220	Treatment-related deaths after concurrent chemoradiotherapy in locally advanced non-small cell lung cancer: A meta-analysis of randomized studies Journal of Clinical Oncology, 2014, 32, 7561-7561.	0.8	0
221	SU-F-BRF-11: Dose Rearrangement in High Dose Locally Advanced Lung Patients Based On Perfusion Imaging. Medical Physics, 2014, 41, 401-401.	1.6	0
222	Metabolic tumor volume on PET reduced more than gross tumor volume on CT during radiotherapy in patients with non-small cell lung cancer treated with 3DCRT or SBRT. Journal of Radiation Oncology, 2013, 2, 191-202.	0.7	30
223	Assessing the Predictive Value of Cytokine Levels for Radiation-Induced Esophagitis in Combination With Clinical and Dosimetric Parameters in Patients Treated for Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, S535.	0.4	О
224	Total Lesion Glycolysis (TLG) at Baseline FDG-PET/CT May Predict Survival Better than Maximum Standard Uptake Value (SUVmax) in Non-Small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2013, 87, S548.	0.4	0
225	Prediction of Late Pulmonary Function Reduction and Radiation-Induced Toxicity During RT Ventilation and Perfusion Imaging in Non-Small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2013, 87, S201-S202.	0.4	0
226	Effect of Normal Lung Definition on Lung Dosimetry and Lung Toxicity Prediction in Radiation Therapy Treatment Planning. International Journal of Radiation Oncology Biology Physics, 2013, 86, 956-963.	0.4	42
227	Serum MicroRNA Signature Predicts Survival in Patients With Unresectable/Inoperable Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 87, S167.	0.4	O
228	FDG Pulmonary Uptake Changes During and Post-Radiation Therapy Compared to Pretreatment in Predicting Radiation-Induced Lung Toxicity in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, S77.	0.4	1
229	Serum MicroRNA as a Predictive Marker for Radiation Pneumonitis in Patients With Inoperable/Unresectable Non-Small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2013, 87, S93.	0.4	3
230	Toward Individualized Fractionation Schedule for Lung Cancer Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 87, S542.	0.4	1
231	Using gEUD to Model Volume Effects for Pneumonitis in Prospective Data From 4 Non-Small Cell Lung Cancer (NSCLC) Dose-Escalation Trials. International Journal of Radiation Oncology Biology Physics, 2013, 87, S45.	0.4	1
232	Oncology Scanâ€"Thoracic Cancers. International Journal of Radiation Oncology Biology Physics, 2013, 85, 571-574.	0.4	2
233	Penetration of Recommended Procedures for Lung Cancer Staging and Management in the United States Over 10 Years: A Quality Research in Radiation Oncology Survey. International Journal of Radiation Oncology Biology Physics, 2013, 85, 1082-1089.	0.4	51
234	Changes in DLCO Instead of FEV1 During Treatment Are Correlated With Posttreatment Reduction in Pulmonary Function and Toxicity After SBRT or 3DCRT for Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, S33-S34.	0.4	0

#	Article	IF	CITATIONS
235	The Impact of the CT Dataset Used for Dose Accumulation on Target and Normal Tissue Doses in Adaptive Radiation Therapy for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, S547.	0.4	4
236	Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity. International Journal of Radiation Oncology Biology Physics, 2013, 85, 798-804.	0.4	50
237	ACR Appropriateness Criteria Nonsurgical Treatment for Non–Small-Cell Lung Cancer: Poor Performance Status or Palliative Intent. Journal of the American College of Radiology, 2013, 10, 654-664.	0.9	29
238	ACR Appropriateness Criteria \hat{A}^{\otimes} Radiation Therapy for Small-Cell Lung Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2013, 36, 206-213.	0.6	16
239	Thymomas and Thymic Carcinomas. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 562-576.	2.3	81
240	Transoral Endoscopic Odontoidectomy to Decompress the Cervicomedullary Junction. Spine, 2013, 38, E901-E906.	1.0	30
241	Genetic Variations in TGFβ1, tPA, and ACE and Radiation-Induced Thoracic Toxicities in Patients with Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, 208-213.	0.5	19
242	Non–Small Cell Lung Cancer, Version 2.2013. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 645-653.	2.3	357
243	Serum miRNA signature to identify a patient's resistance to high-dose radiation therapy for unresectable non-small cell lung cancer Journal of Clinical Oncology, 2013, 31, 7580-7580.	0.8	5
244	SU-E-T-293: A Radiobiological Model Based Approach to Evaluate Brain Radiotherapy Fractionation Regimens. Medical Physics, 2013, 40, 271-271.	1.6	0
245	Imaging During Radiation Therapy Captures Abrupt and Dramatic Changes. Journal of Thoracic Oncology, 2012, 7, 1736-1737.	0.5	1
246	The Management of Patients With Stage IIIA Non–Small Cell Lung Cancer With N2 Mediastinal Node Involvement. Journal of the National Comprehensive Cancer Network: JNCCN, 2012, 10, 599-613.	2.3	65
247	Non–Small Cell Lung Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2012, 10, 1236-1271.	2.3	312
248	Noninvasive Evaluation of Microscopic Tumor Extensions Using Standardized Uptake Value and Metabolic Tumor Volume in Non-Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 82, 960-966.	0.4	36
249	Changes in Global Function and Regional Ventilation and Perfusion on SPECT During the Course of Radiotherapy in Patients With Non-Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 82, e631-e638.	0.4	46
250	Combining Physical and Biologic Parameters to Predict Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer Treated With Definitive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2012, 84, e217-e222.	0.4	88
251	Comparison of the Effectiveness of Radiofrequency Ablation With Stereotactic Body Radiation Therapy in Inoperable Stage I Non-small Cell Lung Cancer: A Systemic Review and Meta-analysis. International Journal of Radiation Oncology Biology Physics, 2012, 84, S611-S612.	0.4	1
252	Comparisons of Local Control and Survival of Stereotactic Body Radiation Therapy Versus Surgery for Stage I Non-small Cell Lung Cancer: A Meta-Analysis. International Journal of Radiation Oncology Biology Physics, 2012, 84, S553-S554.	0.4	0

#	Article	IF	CITATIONS
253	Is Recontouring Organs-at-Risk (OAR) for Adaptive Radiation Therapy Plans for Locally Advanced Lung Cancer Necessary? A Preactivation Analysis From Radiation Therapy Oncology Group (RTOG) 1106. International Journal of Radiation Oncology Biology Physics, 2012, 84, S602.	0.4	O
254	Single Nucleotide Polymorphisms in DNA Repair Genes May Be Associated With Survival in Patients With Non-small Cell Lung Cancer Treated With Definitive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2012, 84, S69.	0.4	2
255	Quantitative Evaluation of Impact Upon Tumor Control Probability (TCP) From Quality Assurance Criteria for Non-small Cell Lung Cancer From RTOG 1106 Study. International Journal of Radiation Oncology Biology Physics, 2012, 84, S601.	0.4	1
256	A Novel Multifield Grid Treatment Technique Using MLC-based IMRT. International Journal of Radiation Oncology Biology Physics, 2012, 84, S863-S864.	0.4	0
257	High Dose to Large Volumes of Pericardium May Be Associated With Radiation-related Pericardial Effusion and Survival in Patients With NSCLC. International Journal of Radiation Oncology Biology Physics, 2012, 84, S592-S593.	0.4	2
258	Relationship Between Pulmonary Artery Invasion and High-dose Radiation and Overall Survival in Patients With Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 84, S612.	0.4	1
259	Anatomy of the petrous apex as related to the endoscopic endonasal approach. Journal of Clinical Neuroscience, 2012, 19, 1695-1698.	0.8	7
260	Implementation of hypoxia measurement into lung cancer therapy. Lung Cancer, 2012, 75, 146-150.	0.9	14
261	Natural growth and disease progression of non-small cell lung cancer evaluated with 18F-fluorodeoxyglucose PET/CT. Lung Cancer, 2012, 78, 51-56.	0.9	29
262	Fascin expression in skull base chordoma: correlation with tumor recurrence and dura erosion. Medical Oncology, 2012, 29, 2438-2444.	1.2	6
263	Can Use of an Atlas Decrease Contouring Variability in Non-small Cell Lung Cancer Radiation Therapy? Analysis of the RTOG 1106 Preclinical Trial Planning Study. International Journal of Radiation Oncology Biology Physics, 2012, 84, S573.	0.4	1
264	The Importance of Dry Run Credentialing for RTOG 1106/ACRIN 6697: A Trial of Individualized Adaptive Radiation Therapy for Patients with Locally Advanced Non-small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2012, 84, S26-S27.	0.4	3
265	Pattern of failure after high-dose thoracic radiation for non-small cell lung cancer: the University of Michigan experience. Journal of Radiation Oncology, 2012, 1, 267-272.	0.7	4
266	Malignant Pleural Mesothelioma. Journal of the National Comprehensive Cancer Network: JNCCN, 2012, 10, 26-41.	2.3	45
267	The influence of the blood handling process on the measurement of circulating TGF- \hat{l}^21 . European Cytokine Network, 2012, 23, 1-6.	1.1	10
268	Negative Predictive Value of Positron Emission Tomography and Computed Tomography for Stage T1-2N0 Non–Small-Cell Lung Cancer: A Meta-Analysis. Clinical Lung Cancer, 2012, 13, 81-89.	1.1	118
269	Surgical treatment of dumbbell-shaped hypoglossal schwannoma via a pure endoscopic transoral approach. Acta Neurochirurgica, 2012, 154, 267-275.	0.9	13
270	TH-A-BRA-01: Contouring Variations and Their Impact on Dose-Volume Histograms in Non-Small-Cell Lung Cancer Radiotherapy: Analysis of a Multi- Institutional Pre-Clinical Trial Planning Study. Medical Physics, 2012, 39, 3983-3983.	1.6	0

#	Article	IF	CITATIONS
271	A TCP model incorporating setup uncertainty and tumor cell density variation in microscopic extension to guide treatment planning. Medical Physics, 2011, 38, 439-448.	1.6	16
272	Co-morbidities Affect Cancer Treatment Strategies And Outcome In Patients With Locally Advanced Non-small Cell Lung Cancer (NSCLC): Report Of Quality Research In Radiation Oncology (QRRO) Data For Stage III NSCLC Patients. International Journal of Radiation Oncology Biology Physics, 2011, 81, S575.	0.4	0
273	Inter-method Variability of [18F]FDG PET Metabolic Response Assessment of Non-small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2011, 81, S625.	0.4	O
274	Consideration of Dose Limits for Organs at Risk of Thoracic Radiotherapy: Atlas for Lung, Proximal Bronchial Tree, Esophagus, Spinal Cord, Ribs, and Brachial Plexus. International Journal of Radiation Oncology Biology Physics, 2011, 81, 1442-1457.	0.4	309
275	Baseline Plasma Proteomic Analysis to Identify Biomarkers that Predict Radiation-Induced Lung Toxicity in Patients Receiving Radiation for Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 2011, 6, 1073-1078.	0.5	28
276	Semiquantification and Classification of Local Pulmonary Function by V/Q Single Photon Emission Computed Tomography in Patients with Non-small Cell Lung Cancer: Potential Indication for Radiotherapy Planning. Journal of Thoracic Oncology, 2011, 6, 71-78.	0.5	37
277	ACR Appropriateness Criteria® Postoperative Adjuvant Therapy in Non-Small Cell Lung Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2011, 34, 537-544.	0.6	10
278	Thymic Tumors. Medical Radiology, 2011, , 309-328.	0.0	0
279	Non–Small Cell Lung Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2010, 8, 740-801.	2.3	606
280	Thymic Malignancies*. Journal of the National Comprehensive Cancer Network: JNCCN, 2010, 8, 1302-1315.	2.3	16
281	ACR Appropriateness Criteria® Nonsurgical Treatment for Non-Small-Cell Lung Cancer: Good Performance Status/Definitive Intent. Current Problems in Cancer, 2010, 34, 228-249.	1.0	8
282	Impact of Fraction Size on Lung Radiation Toxicity: Hypofractionation may be Beneficial in Dose Escalation of Radiotherapy for Lung Cancers. International Journal of Radiation Oncology Biology Physics, 2010, 76, 782-788.	0.4	39
283	Comparative Survival in Patients With Postresection Recurrent Versus Newly Diagnosed Non–Small-Cell Lung Cancer Treated With Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2010, 76, 1100-1105.	0.4	35
284	Radiation Dose–Volume Effects in the Lung. International Journal of Radiation Oncology Biology Physics, 2010, 76, S70-S76.	0.4	878
285	Plasma Proteomic Analysis May Identify New Markers for Radiation-Induced Lung Toxicity in Patients With Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 77, 867-876.	0.4	31
286	ACR Appropriateness Criteria® on Induction and Adjuvant Therapy for Stage N2 Non–Small-Cell Lung Cancer: Expert Panel on Radiation Oncology–Lung. International Journal of Radiation Oncology Biology Physics, 2010, 78, 969-974.	0.4	13
287	Concurrent Chemoradiotherapy Increases the Risk of Radiation-Induced Pericardial Effusion in Patients with Locally Advanced Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 78, S501.	0.4	O
288	Tumor Volume and Metabolic Activity in Non-small Cell Lung Cancer: Natural History and Change with Treatment. International Journal of Radiation Oncology Biology Physics, 2010, 78, S506-S507.	0.4	0

#	Article	IF	Citations
289	Genetic Variation in TGF \hat{l}^21 , tPA and ACE May Predict Radiation-induced Thoracic Toxicity in Patients with Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 78, S35-S36.	0.4	О
290	Report of Quality Research in Radiation Oncology (QRRO) Survey for Lung Cancer Patients Treated in the USA between 2006 and 2007. International Journal of Radiation Oncology Biology Physics, 2010, 78, S36-S37.	0.4	0
291	Re-irradiation May be a Viable Option for Patients with Local Recurrence after a Definitive Course of Radiation Therapy in Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 78, S533.	0.4	O
292	A TCP Model Incorporating Spatial Variation in Tumor Cell Density and Setup Uncertainty to Guide Treatment Planning. International Journal of Radiation Oncology Biology Physics, 2010, 78, S707.	0.4	О
293	An Adaptive Feedback-driven Optimization Strategy to Minimize Radiation Induced Lung Toxicity (RILT) in High Dose Lung Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2010, 78, S116-S117.	0.4	O
294	The Value of Single Nucleotide Polymorphisms in TGF \hat{I}^21 , TPA and ACE in Survival Prediction in Patients with Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 78, S199-S200.	0.4	О
295	Predictors of Radiation-Induced Esophagitis in the Treatment of Lung Cancer: An Analysis of Inflammatory Cytokine Levels and Dosimetric Parameters. International Journal of Radiation Oncology Biology Physics, 2010, 78, S200.	0.4	O
296	The Correlation of Pulmonary FDG PET and Perfusion SPECT Imaging During Radiotherapy for Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 78, S203.	0.4	О
297	ACR Appropriateness Criteria \hat{A}^{\otimes} Noninvasive Clinical Staging of Bronchogenic Carcinoma. Journal of Thoracic Imaging, 2010, 25, W107-W111.	0.8	21
298	Transclival cerebrospinal fluid rhinorrhea as the initial presenting symptom of a tiny intradural chordoma. Journal of Clinical Neuroscience, 2010, 17, 1083-1085.	0.8	15
299	Factors associated with overall survival in 1706 patients with nasopharyngeal carcinoma: Significance of intensive neoadjuvant chemotherapy and radiation break. Radiotherapy and Oncology, 2010, 96, 94-99.	0.3	52
300	Use of increase in esophageal FDG SUV during radiotherapy to predict radiation esophagitis Journal of Clinical Oncology, 2010, 28, e17509-e17509.	0.8	0
301	Intra and Interfraction Mediastinal Nodal Region Motion: Implications for Internal Target Volume Expansions. Medical Dosimetry, 2009, 34, 133-139.	0.4	14
302	Time to Treatment in Patients With Stage III Non–Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 74, 790-795.	0.4	27
303	Using 18F-Fluorodeoxyglucose Positron Emission Tomography to Estimate the Length of Gross Tumor in Patients With Squamous Cell Carcinoma of the Esophagus. International Journal of Radiation Oncology Biology Physics, 2009, 73, 136-141.	0.4	86
304	The Effect of Radiation Dose and Chemotherapy on Overall Survival in 237 Patients With Stage III Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1383-1390.	0.4	51
305	Designing Targets for Elective Nodal Irradiation in Lung Cancer Radiotherapy: A Planning Study. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1397-1403.	0.4	6
306	Using Fluorodeoxyglucose Positron Emission Tomography to Assess Tumor Volume During Radiotherapy for Non–Small-Cell Lung Cancer and Its Potential Impact on Adaptive Dose Escalation and Normal Tissue Sparing. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1228-1234.	0.4	137

#	Article	IF	Citations
307	Elevation of Plasma TGF- \hat{l}^21 During Radiation Therapy Predicts Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer: A Combined Analysis From Beijing and Michigan. International Journal of Radiation Oncology Biology Physics, 2009, 74, 1385-1390.	0.4	91
308	Elective Nodal Irradiation (ENI) in Locally Advanced Non–Small-Cell Lung Cancer (NSCLC): Evidence Versus Opinion?. International Journal of Radiation Oncology Biology Physics, 2009, 74, 322.	0.4	5
309	The Additional Value of V/Q SPECT over Q SPECT Alone for Pulmonary Function Mapping before, during and after Radiotherapy in Patients with Non–small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 75, S448.	0.4	O
310	FDG-PET/CT during Radiation Therapy to Predict Survival and Guide Individualized Adaptive Dose Escalation in Patients with Non–small-cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 75, S35-S36.	0.4	3
311	Radiation Dose is Important for Overall Survival in Patients with Inoperable or Unresectable Non–small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 75, S475.	0.4	O
312	SPECT-based Dose Rearrangement in Normal Lung to Minimize Loss of Function While Maintaining Physical Dose-based Iso-NTCP Limits. International Journal of Radiation Oncology Biology Physics, 2009, 75, S49.	0.4	0
313	Plasma Cytokine Profile during Radiotherapy may Predict Symptomatic Radiation-induced Lung Toxicity in Patients with Non–small-cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 75, S109.	0.4	O
314	Factors Associated with Patterns of Practice for Elective Nodal Irradiation in Non-small Cell Lung Cancer Patients among US Radiation Oncologists. International Journal of Radiation Oncology Biology Physics, 2009, 75, S129-S130.	0.4	1
315	Plasma Proteomic Analysis of Radiation-induced Changes May Help to Identify Patients at Risk for Radiation-induced Lung Toxicity In Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 75, S173-S174.	0.4	O
316	Radiation produces differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant mice. Journal of Hematology and Oncology, 2009, 2, 6.	6.9	92
317	ACR Appropriateness Criteria® on Nonsurgical Treatment for Non–Small-Cell Lung Cancer: Poor Performance Status or Palliative Intent. Journal of the American College of Radiology, 2009, 6, 85-95.	0.9	12
318	PET Study Demonstrates Radiation Dependent Changes on Tumor Hypoxia and Proliferation during the Course of Radiotherapy in a Lung Cancer Xenograft Model. International Journal of Radiation Oncology Biology Physics, 2008, 72, S30.	0.4	1
319	The Impact of Histologic Subtype and Stage on Survival in Patients with Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, S458.	0.4	O
320	Is there a Role for [18F]2-Fluoro-2-Deoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT) in Predicting Radiation Pneumonitis. International Journal of Radiation Oncology Biology Physics, 2008, 72, S691.	0.4	1
321	Report From the International Atomic Energy Agency (IAEA) Consultants' Meeting on Elective Nodal Irradiation in Lung Cancer: Small-Cell Lung Cancer (SCLC). International Journal of Radiation Oncology Biology Physics, 2008, 72, 327-334.	0.4	52
322	Report From the International Atomic Energy Agency (IAEA) Consultants' Meeting on Elective Nodal Irradiation in Lung Cancer: Non–Small-Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2008, 72, 335-342.	0.4	76
323	The predictive role of plasma TGF- \hat{l}^21 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer. Lung Cancer, 2008, 59, 232-239.	0.9	88
324	Comparative Proteomic Analysis of Radiation-Induced Changes in Mouse Lung: Fibrosis-Sensitive and -Resistant Strains. Radiation Research, 2008, 169, 417-425.	0.7	26

#	Article	IF	CITATIONS
325	Utilize target motion to cover clinical target volume (ctv) – a novel and practical treatment planning approach to manage respiratory motion. Radiotherapy and Oncology, 2008, 89, 292-303.	0.3	7
326	Inhibition of the Tumor Necrosis Factor-Â Pathway Is Radioprotective for the Lung. Clinical Cancer Research, 2008, 14, 1868-1876.	3.2	61
327	The Use of Blood Biomarkers to Predict Radiation Lung Toxicity: A Potential Strategy to Individualize Thoracic Radiation Therapy. Cancer Control, 2008, 15, 140-150.	0.7	84
328	Combining cytokines of different pathways may improve predictive power for radiation-induced lung toxicity. Journal of Clinical Oncology, 2008, 26, 22177-22177.	0.8	0
329	Combining plasma TGF- \hat{l}^21 and lung dosimetric factor to predict radiation-induced lung toxicity in patients with non-small cell lung cancer: A combined analysis from Beijing and Michigan. Journal of Clinical Oncology, 2008, 26, 7548-7548.	0.8	О
330	SU-GG-T-113: Using Probability Density Functions of Respiratory Motion to Model Motion Effects On Dose Distributions and Optimize Treatment Planning for Lung Cancers. Medical Physics, 2008, 35, 2751-2752.	1.6	0
331	Thymoma. Medical Radiology, 2008, , 159-170.	0.0	1
332	A Pilot Study of [¹⁸ F]Fluorodeoxyglucose Positron Emission Tomography Scans During and After Radiation-Based Therapy in Patients With Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2007, 25, 3116-3123.	0.8	154
333	PATTERNS OF PRACTICE IN LIMITED-STAGE SMALL CELL LUNG CANCER (LS-SCLC) AMONG RADIATION ONCOLOGISTS. Chest, 2007, 132, 589B.	0.4	О
334	Three-dimensional conformal radiation may deliver considerable dose of incidental nodal irradiation in patients with early stage node-negative non-small cell lung cancer when the tumor is large and centrally located. Radiotherapy and Oncology, 2007, 82, 153-159.	0.3	37
335	Quantification of incidental dose to potential clinical target volume (CTV) under different stereotactic body radiation therapy (SBRT) techniques for non-small cell lung cancer – Tumor motion and using internal target volume (ITV) could improve dose distribution in CTV. Radiotherapy and Oncology, 2007, 85, 267-276.	0.3	28
336	PD5-1-5: Radiation-induced elevation in plasma TGF-beta1 during radiation therapy may be predictive of radiation-induced lung toxicity in patients with non-small cell lung cancer: A combined analysis from Beijing and Michigan. Journal of Thoracic Oncology, 2007, 2, S472-S473.	0.5	O
337	PD5-1-4: Differences in pattern of practice in radiation therapy for patients with non-small cell lung cancer between physicians from the United States and Other Countries. Journal of Thoracic Oncology, 2007, 2, S472.	0.5	O
338	High Radiation Dose May Reduce the Negative Effect of Large Gross Tumor Volume in Patients With Medically Inoperable Early-Stage Non–Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2007, 68, 103-110.	0.4	57
339	Radiation Dose is an Independent Predictor for Overall Survival in Patients With Stage III Unresectable Non-small Cell Lung Cancer Treated by Radiation With and Without Chemotherapy. International Journal of Radiation Oncology Biology Physics, 2007, 69, S59.	0.4	2
340	Patterns of Practice in Radiation Dose Prescription and Treatment Planning for Patients With Lung Cancer Among Members of American Society of Therapeutic Radiology and Oncology. International Journal of Radiation Oncology Biology Physics, 2007, 69, S483.	0.4	13
341	Differences in Pattern of Practice in Radiation Therapy for Patients With Non-Small Cell Lung Cancer between Physicians From Canada and the United States. International Journal of Radiation Oncology Biology Physics, 2007, 69, S503.	0.4	0
342	Differences in Pattern of Practice in Radiation Therapy for Patients With Non-Small Cell Lung Cancer (NSCLC) Between Physicians in China and the United States (US). International Journal of Radiation Oncology Biology Physics, 2007, 69, S527.	0.4	0

#	Article	IF	CITATIONS
343	Current Status of Radiation Oncology Community and Growth in Mainland China During Last 10 Years. International Journal of Radiation Oncology Biology Physics, 2007, 69, S183.	0.4	0
344	Secondary metabolites from Commiphora opobalsamum and their antiproliferative effect on human prostate cancer cells. Phytochemistry, 2007, 68, 1331-1337.	1.4	75
345	Physical Models and Simpler Dosimetric Descriptors of Radiation Late Toxicity. Seminars in Radiation Oncology, 2007, 17, 108-120.	1.0	52
346	P3-201: Radiation dose is significantly associated with overall survival in patients with stage III non-small cell lung cancer treated with combined radiation and chemotherapy. Journal of Thoracic Oncology, 2007, 2, S766.	0.5	0
347	The Role of Radiation Therapy in Thoracic Tumors. Hematology/Oncology Clinics of North America, 2006, 20, 363-400.	0.9	20
348	Long-term results of high-dose conformal radiotherapy for patients with medically inoperable T1–3N0 non–small-cell lung cancer: Is low incidence of regional failure due to incidental nodal irradiation?. International Journal of Radiation Oncology Biology Physics, 2006, 64, 120-126.	0.4	78
349	Final toxicity results of a radiation-dose escalation study in patients with non–small-cell lung cancer (NSCLC): Predictors for radiation pneumonitis and fibrosis. International Journal of Radiation Oncology Biology Physics, 2006, 65, 1075-1086.	0.4	294
350	Reporting and analyzing statistical uncertainties in Monte Carlo–based treatment planning. International Journal of Radiation Oncology Biology Physics, 2006, 65, 1249-1259.	0.4	76
351	Planning the breast tumor bed boost: Changes in the excision cavity volume and surgical scar location after breast-conserving surgery and whole-breast irradiation. International Journal of Radiation Oncology Biology Physics, 2006, 66, 680-686.	0.4	100
352	161. International Journal of Radiation Oncology Biology Physics, 2006, 66, S91.	0.4	o
353	1041. International Journal of Radiation Oncology Biology Physics, 2006, 66, S153-S154.	0.4	0
354	2476. International Journal of Radiation Oncology Biology Physics, 2006, 66, S474-S475.	0.4	3
355	2494. International Journal of Radiation Oncology Biology Physics, 2006, 66, S485.	0.4	O
356	TH-E-230A-06: Comparison of Correction and Model Based Dose Algorithms in Lung Cancer Retrospective Dose Recalculation and Treatment Outcome Evaluation. Medical Physics, 2006, 33, 2295-2295.	1.6	0
357	18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?. Journal of Nuclear Medicine, 2006, 47, 1808-12.	2.8	183
358	In regard to De Jaeger et al.: Significance of plasma transforming growth factor-beta levels in radiotherapy for non–small-cell lung cancer (INT J RADIAT ONCOL BIOL PHYS 2004;58:1378–1387). International Journal of Radiation Oncology Biology Physics, 2005, 61, 1276-1277.	0.4	10
359	CT-based definition of thoracic lymph node stations: An atlas from the University of Michigan. International Journal of Radiation Oncology Biology Physics, 2005, 63, 170-178.	0.4	134
360	High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non–small-cell lung cancer: Long-term results of a radiation dose escalation study. International Journal of Radiation Oncology Biology Physics, 2005, 63, 324-333.	0.4	450

#	Article	IF	CITATIONS
361	Radiation-Induced Lung Apoptosis is Mediated by TNF-Alpha Action. International Journal of Radiation Oncology Biology Physics, 2005, 63, S83-S84.	0.4	2
362	Using FDG-PET to Delineate Gross Tumor and Internal Target Volumes. International Journal of Radiation Oncology Biology Physics, 2005, 63, S400-S401.	0.4	11
363	Non-Small Cell Lung Cancer Therapy-Related Pulmonary Toxicity: An Update on Radiation Pneumonitis and Fibrosis. Seminars in Oncology, 2005, 32, 42-54.	0.8	158
364	Using Acupressure to Modify Alertness in the Classroom: A Single-Blinded, Randomized, Cross-Over Trial. Journal of Alternative and Complementary Medicine, 2005, 11, 673-679.	2.1	21
365	CT localization of axillary lymph nodes in relation to the humeral head: Significance of arm position for radiation therapy planning. Radiotherapy and Oncology, 2005, 77, 191-193.	0.3	18
366	Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer. Radiotherapy and Oncology, 2005, 77, 176-181.	0.3	101
367	PD-112 Patterns of local/regional failure after high dose radiation in patients with inoperable/unrestrictable non-small cell lung cancer. Lung Cancer, 2005, 49, S100.	0.9	0
368	P-624 High dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small cell lung cancer: Long-term results of a radiation dose escalation study. Lung Cancer, 2005, 49, S283.	0.9	3
369	An improved internal mammary irradiation technique in radiation treatment of locally advanced breast cancers. Journal of Applied Clinical Medical Physics, 2005, 6, 84-93.	0.8	7
370	Monte Carlo-based lung cancer treatment planning incorporating PET-defined target volumes. Journal of Applied Clinical Medical Physics, 2005, 6, 65-76.	0.8	4
371	NTCP modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2004, 60, S525-S525.	0.4	0
372	The impact of central lung distance, maximal heart distance, and radiation technique on the volumetric dose of the lung and heart for intact breast radiation. International Journal of Radiation Oncology Biology Physics, 2002, 54, 963-971.	0.4	95
373	Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V30 and transforming growth factor \hat{l}^2 . International Journal of Radiation Oncology Biology Physics, 2001, 50, 899-908.	0.4	162
374	M6P/IGF2R is mutated in squamous cell carcinoma of the lung. Oncogene, 2000, 19, 1572-1578.	2.6	104
375	Bacterial cell wall polymers promote intestinal fibrosis by direct stimulation of myofibroblasts. American Journal of Physiology - Renal Physiology, 1999, 277, G245-G255.	1.6	54
376	Circulating thrombomodulin during radiation therapy of lung cancer. Radiation Oncology Investigations, 1999, 7, 238-242.	1.3	33
377	Plasma transforming growth factor \hat{l}^21 as a predictor of radiation pneumonitis. International Journal of Radiation Oncology Biology Physics, 1998, 41, 1029-1035.	0.4	234
378	Identification of M6P/IGF2R as a tumor suppressor gene in lung cancer. International Journal of Radiation Oncology Biology Physics, 1998, 42, 229.	0.4	0

#	Article	IF	CITATIONS
379	The relevance of transforming growth factor $\hat{l}^2 l$ in pulmonary injury after radiation therapy. Lung Cancer, 1998, 19, 109-120.	0.9	58
380	Transforming Growth Factor Beta: A Plasma Tumor Marker. , 1998, , 417-430.		4
381	Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis. International Journal of Radiation Oncology Biology Physics, 1997, 37, 253-258.	0.4	130
382	Hyperfractionated accelerated radiation therapy for nonsmall cell lung cancer: Clinical phase trial. International Journal of Radiation Oncology Biology Physics, 1997, 39, 545-552.	0.4	31
383	Physical and biological predictors of changes in whole-lung function following thoracic irradiation. International Journal of Radiation Oncology Biology Physics, 1997, 39, 563-570.	0.4	211
384	26 Increased plasma transforming growth factor beta1 (TGF \hat{l}^2 1) level in lung cancer patients may be due to the loss of mannose 6-phosphate/insulin like growth factor 2 receptor (). International Journal of Radiation Oncology Biology Physics, 1997, 39, 147.	0.4	0
385	124 Plasma transforming growth factor \hat{l}^21 as a predictor of radiation pneumonitis. International Journal of Radiation Oncology Biology Physics, 1997, 39, 197.	0.4	22
386	2155 Plasma transforming growth factor beta1 (TGF \hat{l}^21): A monitor for persistence or recurrence of disease in patients with lung cancer. International Journal of Radiation Oncology Biology Physics, 1997, 39, 318.	0.4	0
387	Plasma transforming growth factor- \hat{l}^21 reflects disease status in patients with lung cancer after radiotherapy: a possible tumor marker. Lung Cancer, 1996, 16, 47-59.	0.9	86
388	Transforming Growth Factor-Beta Receptors and Mannose 6-Phosphate/Insulin-Like Growth Factor-II Receptor Expression in Human Hepatocellular Carcinoma. Annals of Surgery, 1995, 222, 171-178.	2.1	69
389	Elevated Plasma Transforming Growth Factor- \hat{l}^2 1 Levels in Breast Cancer Patients Decrease After Surgical Removal of the Tumor. Annals of Surgery, 1995, 222, 155-162.	2.1	192
390	Normal tissue injury after cancer therapy is a local response exacerbated by an endocrine effect of $TGF\hat{l}^2$. British Journal of Radiology, 1995, 68, 331-333.	1.0	63
391	Risk Factors for Brain Metastases in Patients With Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Frontiers in Oncology, $0,12,.$	1.3	3
392	Potential Determinants for Radiation-Induced Lymphopenia in Patients With Breast Cancer Using Interpretable Machine Learning Approach. Frontiers in Immunology, $0,13,1$	2.2	3
393	A Transfer Learning Framework for Deep Learning-Based CT-to-Perfusion Mapping on Lung Cancer Patients. Frontiers in Oncology, 0, 12, .	1.3	3