
B Gudveig Baarli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8450466/publications.pdf Version: 2024-02-01

R CHOVELC RAADLE

#	Article	IF	CITATIONS
1	Survival and recovery atrypid fauna following the terminal Ordovician extinction, the Atrypinae: central Oslo Region, Norway. Historical Biology, 2021, 33, 403-440.	0.7	5
2	Plectatrypinae and other ribbed atrypides succeeding the end Ordovician extinction event, Central Oslo Region, Norway. Journal of Paleontology, 2021, 95, 75-105.	0.5	5
3	Effects of hurricanes, mudslides, flooding, and riverine erosion on the erasure of archaeological sites in tropical, highland Honduras. Geoarchaeology - an International Journal, 2020, 35, 338-350.	0.7	1
4	Paleoenvironment and taphonomy of lower Miocene bivalve and macroid assemblages: the Lagos Biocalcarenite (Lagos-Portimão Formation, southern Portugal). Facies, 2019, 65, 1.	0.7	4
5	Storm Tracks Predict Land-To-Sea Sediment Transfer: Erosional Patterns from the Upper Ordovician (Hirnantian) in the Oslo Region, Norway. Journal of Geology, 2018, 126, 325-342.	0.7	5
6	On the rise and fall of oceanic islands: Towards a global theory following the pioneering studies of Charles Darwin and James Dwight Dana. Earth-Science Reviews, 2018, 180, 17-36.	4.0	8
7	Taphonomic Range and Sedimentary Dynamics of Modern and Fossil Rhodolith Beds: Macaronesian Realm (North Atlantic Ocean). Coastal Research Library, 2017, , 221-261.	0.2	11
8	Shoal-water dynamics and coastal biozones in a sheltered-island setting: Upper Devonian Pillara Limestone (Western Australia). Lethaia, 2016, 49, 507-523.	0.6	2
9	Recent Rhodolith Deposits Stranded on the Windward Shores of Maio (Cape Verde Islands): Historical Resource for the Local Economy. Journal of Coastal Research, 2016, 320, 735-743.	0.1	5
10	A new early Silurian brachiopod genus, <i>Thulatrypa</i> , from Norway and South China, and its palaeobiogeographical significance. Alcheringa, 2016, 40, 83-97.	0.5	7
11	Septate gastropods from the Upper Devonian of the Canning Basin: implications for palaeoecology. Alcheringa, 2015, 39, 519-524.	0.5	2
12	Role of environmental change in rock-boring echinoid trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432, 1-14.	1.0	26
13	A Middle Miocene carbonate embankment on an active volcanic slope: Ilhéu de Baixo, Madeira Archipelago, Eastern Atlantic. Geological Journal, 2014, 49, 90-106.	0.6	13
14	Miocene–Pliocene rocky shores on São Nicolau (Cape Verde Islands): Contrasting windward and leeward biofacies on a volcanically active oceanic island. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395, 131-143.	1.0	16
15	The early Rhuddanian survival interval in the Lower Silurian of the Oslo Region: A third pulse of the end-Ordovician extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395, 29-41.	1.0	19
16	Coastal dunes with high content of rhodolith (coralline red algae) bioclasts: Pleistocene formations on Maio and São Nicolau in the Cape Verde archipelago. Aeolian Research, 2013, 8, 1-9.	1.1	14
17	What Darwin did not see: Pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands. Geological Magazine, 2013, 150, 183-189.	0.9	20
18	Upper Devonian shoal-water delta integrated with cyclic back-reef facies off the Mowanbini Archipelago (Canning Basin), Western Australia. Facies, 2013, 59, 991-1009.	0.7	7

B GUDVEIG BAARLI

#	Article	lF	CITATIONS
19	Geomorphology and Coastal Erosion of a Quartzite Island: Hongdo in the Yellow Sea off the SW Korean Peninsula. Journal of Geology, 2013, 121, 503-516.	0.7	4
20	Basalt mounds and adjacent depressions attract contrasting biofacies on a volcanically active Middle Miocene coastline (Porto Santo, Madeira Archipelago, Portugal). Facies, 2012, 58, 573-585.	0.7	11
21	Diverse Macroids and Rhodoliths from the Upper Pleistocene of Baja California Sur, Mexico. Journal of Coastal Research, 2012, 279, 296-305.	0.1	14
22	Rhodolith Stranding Event on a Pliocene Rocky Shore from Isla Cerralvo in the Lower Gulf of California (Mexico). Journal of Coastal Research, 2012, 279, 225-233.	0.1	6
23	Rhodoliths, uniformitarianism, and Darwin: Pleistocene and Recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330, 83-100.	1.0	39
24	Development of Intertidal Biotas Through Phanerozoic Time. , 2012, , 63-128.		10
25	Extreme habitat adaptation by boring bivalves on volcanically active paleoshores from North Atlantic Macaronesia. Facies, 2012, 58, 325-338.	0.7	24
26	Symbiotic association of a pyrgomatid barnacle with a coral from a volcanic middle Miocene shoreline (Porto Santo, Madeira Archipelago, Portugal). Palaeontology, 2012, 55, 173-182.	1.0	15
27	Rhodolith transport and immobilization on a volcanically active rocky shore: Middle Miocene at Cabeço das Laranjas on Ilhéu de Cima (Madeira Archipelago, Portugal). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300, 113-127.	1.0	32
28	Miocene intertidal zonation on a volcanically active shoreline: Porto Santo in the Madeira Archipelago, Portugal. Lethaia, 2011, 44, 26-32.	0.6	21
29	Ichnofacies and microbial build-ups on Late Miocene rocky shores from Menorca (Balearic Islands), Spain. Facies, 2011, 57, 255-265.	0.7	20
30	Vertebrate Remains on Ancient Rocky Shores: A Review with Report on Hadrosaur Bones from the Upper Cretaceous of Baja California (México). Journal of Coastal Research, 2006, 223, 574-580.	0.1	3
31	Glacial and rocky-shore dynamics of the Karlebotn monadnocks: late Neoproterozoic of northern Norway. Canadian Journal of Earth Sciences, 2006, 43, 1215-1228.	0.6	2
32	Erosion and Burial of Granite Rocky Shores in the Recent and Late Pleistocene of the Seychelles Islands: Physical and Biological Perspectives. Journal of Coastal Research, 2005, 215, 867-879.	0.1	14
33	Diversification of rocky-shore biotas through geologic time. Geobios, 1999, 32, 257-273.	0.7	41
34	Comparison of Lower Silurian shores and shelves in North America and Siberia. , 1997, , .		2
35	Colonization and reef growth on a Late Pleistocene rocky shore and abrasion platform in Western Australia. Lethaia, 1995, 28, 85-98.	0.6	13
36	Orthacean and strophomenid brachiopods from the Lower Silurian of the central Oslo Region. Lethaia, 1995, 28, 354-354.	0.6	2

B GUDVEIG BAARLI

#	Article	IF	CITATIONS
37	Size and shape distribution of levelâ€bottom tabulate corals and stromatoporoids (Silurian). Lethaia, 1992, 25, 269-282.	0.6	11
38	Peripheral bulge of a foreland basin in the Oslo Region during the Early Silurian. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 78, 149-161.	1.0	12
39	Bathymetric Co-Ordination of Proximality Trends and Level-Bottom Communities: A Case Study from the Lower Silurian of Norway. Palaios, 1988, 3, 577.	0.6	22
40	Encrusting corals on a latest Ordovician to earliest Silurian rocky shore, southwest Hudson Bay, Manitoba, Canada. Geology, 1987, 15, 15.	2.0	31
41	Benthic faunal associations in the Lower Silurian Solvik Formation of the Oslo-Asker Districts, Norway. Lethaia, 1987, 20, 75-90.	0.6	34
42	The smooth, spire-bearing brachiopods after the terminal Ordovician extinction through lower Llandovery in the central Oslo region, Norway. Journal of Paleontology, 0, , 1-31.	0.5	3