Atsushi Nakajima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8450004/publications.pdf

Version: 2024-02-01

567281 580821 45 711 15 25 citations h-index g-index papers 45 45 45 665 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and Characterization of Metal-Encapsulating Si ₁₆ Cage Superatoms. Accounts of Chemical Research, 2018, 51, 1735-1745.	15.6	63
2	Photoelectron spectroscopy of binary Au cluster anions with a doped metal atom: AunMâ^' (n=2–7), M=Pd, Ni, Zn, Cu, and Mg. Chemical Physics Letters, 2006, 422, 62-66.	2.6	61
3	Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16nanocluster ions. Nanoscale, 2014, 6, 14702-14707.	5.6	61
4	Development of Integrated Dry–Wet Synthesis Method for Metal Encapsulating Silicon Cage Superatoms of M@Si ₁₆ (M = Ti and Ta). Journal of Physical Chemistry C, 2017, 121, 20507-20516.	3.1	57
5	Magnetic properties of lanthanide organometallic sandwich complexes produced in a molecular beam. Polyhedron, 2005, 24, 2341-2345.	2.2	36
6	A designer ligand field for blue-green luminescence of organoeuropium(<scp>ii</scp>) sandwich complexes with cyclononatetraenyl ligands. Chemical Communications, 2017, 53, 6557-6560.	4.1	36
7	Photoelectron spectroscopy of pyrene cluster anions, (pyrene)nⰠ(n=1–20). Chemical Physics Letters, 2004, 389, 279-283.	2.6	31
8	Geometric and electronic properties of Si-atom doped Al clusters: robustness of binary superatoms against charging. Physical Chemistry Chemical Physics, 2017, 19, 20401-20411.	2.8	23
9	Imaging and Characterizing Long-Range Surface Plasmon Polaritons Propagating in a Submillimeter Scale by Two-Color Two-Photon Photoelectron Emission Microscopy. Plasmonics, 2013, 8, 1411-1415.	3.4	22
10	Size-Effect on Electrochemical Hydrogen Evolution Reaction by Single-Size Platinum Nanocluster Catalysts Immobilized on Strontium Titanate. Topics in Catalysis, 2018, 61, 126-135.	2.8	22
11	Enhanced oxygen reduction activity of platinum subnanocluster catalysts through charge redistribution. Chemical Communications, 2019, 55, 12603-12606.	4.1	22
12	Photoexcited State Confinement in Two-Dimensional Crystalline Anthracene Monolayer at Room Temperature. ACS Nano, 2017, 11, 4307-4314.	14.6	17
13	Oxidative reactivity of alkali-like superatoms of group 5 metal-encapsulating Si16 cage nanoclusters. Communications Chemistry, 2018, 1, .	4.5	17
14	Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C ₆₀ . ACS Nano, 2021, 15, 1199-1209.	14.6	17
15	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mrow><mml:mtext>B</mml:mtext></mml:mrow><mml:mrov></mml:mrov><mml:none></mml:none><mml:mrow></mml:mrow></mml:mrow> <td>w><mml:m< td=""><td>hn>2</td></mml:m<></td>	w> <mml:m< td=""><td>hn>2</td></mml:m<>	hn>2
16	Nitric oxide oxidation of a Ta encapsulating Si cage nanocluster superatom (Ta@Si ₁₆) deposited on an organic substrate; a Si cage collapse indicator. Physical Chemistry Chemical Physics, 2018, 20, 26273-26279.	2.8	16
17	Classification and characterization of gold and nickel nanoparticles with a differential mobility analyzer. Science and Technology of Advanced Materials, 2006, 7, 209-215.	6.1	15
18	Formation and Control of Ultrasharp Metal/Molecule Interfaces by Controlled Immobilization of Sizeâ€selected Metal Nanoclusters onto Organic Molecular Films. Advanced Functional Materials, 2014, 24, 1202-1210.	14.9	14

#	Article	IF	CITATIONS
19	Two-photon photoelectron emission microscopy for surface plasmon polaritons at the $Au(111)$ surface decorated with alkanethiolate self-assembled monolayers. Physical Chemistry Chemical Physics, 2017, 19, 13455-13461.	2.8	13
20	Al13â^' and B@Al12â^' superatoms on a molecularly decorated substrate. Nature Communications, 2022, 13, 1336.	12.8	13
21	Characterization of floating-gate memory device with thiolate-protected gold and gold-palladium nanoclusters. AIP Advances, 2018, 8, .	1.3	12
22	Visualization of Surface Plasmons Propagating at the Buried Organic/Metal Interface with Silver Nanocluster Sensitizers. ACS Nano, 2020, 14, 2044-2052.	14.6	10
23	Electronic structure of hydrogen-terminated silicon surfaces [H-Si(111)] studied by two-photon photoemission. Applied Physics A: Materials Science and Processing, 2010, 98, 735-743.	2.3	9
24	Excited electron dynamics at ferrocene-terminated self-assembled monolayers on Au(111): Lengthened lifetime of image potential state. Chemical Physics Letters, 2013, 561-562, 131-136.	2.6	9
25	Physical properties of mononuclear organoeuropium sandwich complexes ligated by cyclooctatetraene and bis(trimethylsilyl)cyclooctatetraene. Chemical Physics Letters, 2014, 595-596, 144-150.	2.6	9
26	Anion Photoelectron Spectroscopy of Rubrene: Molecular Insights into Singlet Fission Energetics. Journal of Physical Chemistry C, 2017, 121, 20680-20686.	3.1	9
27	Highly Dispersive Nearly Free Electron Bands at a 2D-Assembled C ₆₀ Monolayer. Journal of Physical Chemistry C, 2020, 124, 734-741.	3.1	8
28	Interfacial Oxidation of Ta-Encapsulating Si ₁₆ Cage Superatoms (Ta@Si ₁₆) on Strontium Titanate Substrates. Journal of Physical Chemistry C, 2020, 124, 28108-28115.	3.1	7
29	Two-photon photoemission spectroscopy for silver nanoparticles on a hydrogen-terminated Si(1 $1\ 1$) surface: Metal nanoparticle-enhanced photoemission. Chemical Physics Letters, 2010, 489, 69-74.	2.6	6
30	Multiple-decker and ring sandwich formation of manganese $\hat{a}\in$ "benzene organometallic cluster anions: Mn _n Bz _n ^{\hat{a}} (n = $1\hat{a}\in$ 5 and 18). Physical Chemistry Chemical Physics, 2016, 18, 26049-26056.	2.8	6
31	Highly Ordered Self-Assembled Monolayers of Carboxy- and Ester-Terminated Alkanethiols on Au(111): Infrared Absorption and Hyperthermal-Deposition Experiments with Cr(benzene) ₂ Ions. Journal of Physical Chemistry C, 2017, 121, 6736-6747.	3.1	6
32	Liquid-phase catalysis by single-size palladium nanoclusters supported on strontium titanate: size-specific catalysts for Suzuki–Miyaura coupling. Catalysis Science and Technology, 2018, 8, 5827-5834.	4.1	6
33	Platinum nanocluster catalysts supported on Marimo carbon via scalable dry deposition synthesis. RSC Advances, 2021, 11, 39216-39222.	3.6	6
34	Enhanced oxygen reduction activity of size-selected platinum subnanocluster catalysts: Pt _{<i>n</i>} (<i>n</i> = 3–9). Catalysis Science and Technology, 2022, 12, 1400-1407.	4.1	6
35	An atomic force microscope study of vanadium-benzene sandwich clusters soft-landed on self-assembled monolayers. European Physical Journal D, 2009, 52, 103-106.	1.3	5
36	Molecularly Designed Cluster–Surface Interaction for Halogen-like and Alkali-like Metal-Encapsulating Silicon Cage Superatoms on n- and p-Type Organic Substrates. Journal of Physical Chemistry C, 2022, 126, 10889-10899.	3.1	5

#	Article	IF	CITATIONS
37	Energy Level Alignment of Organic Molecules with Chemically Modified Alkanethiolate Self-Assembled Monolayers. Journal of Physical Chemistry C, 2017, 121, 27399-27405.	3.1	4
38	Vibrational Spectra of Thiolate-Protected Gold Nanocluster with Infrared Reflection Absorption Spectroscopy: Size- and Temperature-Dependent Ordering Behavior of Organic Monolayer. Journal of Physical Chemistry C, 2020, 124, 363-371.	3.1	4
39	The stability of binary Al12X nanoclusters (X  =  Sc and Ti): superatom or Wade's polyhedro Physics Condensed Matter, 2018, 30, 494004.	n Journal 1.8	of
40	Size-Dependent Oxidative Stability of Silicon Nanoclusters Mixed with a Tantalum Atom. Journal of Physical Chemistry C, 2022, 126, 4423-4432.	3.1	3
41	Dual IR laser shattering of a water microdroplet. Applied Physics A: Materials Science and Processing, 2012, 109, 31-37.	2.3	2
42	Formation of Highly Ordered Semiconducting Anthracene Monolayer Rigidly Connected to Insulating Alkanethiolate Thin Film. Journal of Physical Chemistry C, 2018, 122, 26080-26087.	3.1	2
43	Wavelength Dependence of Water Microdroplet Shattering with Dual IR Lasers and Dye Sensitization. Zeitschrift Fur Physikalische Chemie, 2014, 228, 459-470.	2.8	1
44	Occupied and Unoccupied Levels of Half-Fluorinated and Perfluorinated Rubrene Thin Films Probed by One- and Two-Photon Photoemission. Journal of Physical Chemistry C, 2020, 124, 12409-12416.	3.1	1
45	Formation of Superatom Monolayer Using Nanocluster Ion Source Based on High-Power Impulse Magnetron Sputtering. , 2018, , 442-451.		0