
Ruann Janser Soares De Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8449666/publications.pdf

Version: 2024-02-01

RUANN JANSER SOARES DE

#	Article	IF	CITATIONS
1	Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 2015, 74, 185-198.	6.2	171
2	Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science and Technology, 2018, 76, 82-89.	15.1	144
3	Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structure, 2017, 14, 17-29.	4.5	116
4	Synergistic effects of agroindustrial wastes on simultaneous production of protease and α-amylase under solid state fermentation using a simplex centroid mixture design. Industrial Crops and Products, 2013, 49, 813-821.	5.2	79
5	A new approach for proteases production by Aspergillus niger based on the kinetic and thermodynamic parameters of the enzymes obtained. Biocatalysis and Agricultural Biotechnology, 2015, 4, 199-207.	3.1	58
6	Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-industrial Wastes Valorization. Waste and Biomass Valorization, 2015, 6, 1085-1093.	3.4	46
7	Spent brewer's yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World Journal of Microbiology and Biotechnology, 2020, 36, 95.	3.6	45
8	A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology, 2015, 4, 55-62.	3.1	43
9	Sequential hydrolysis of spent brewer's yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochemistry, 2019, 84, 91-102.	3.7	43
10	Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresources and Bioprocessing, 2019, 6, .	4.2	42
11	Production and biochemical properties of proteases secreted by Aspergillus niger under solid state fermentation in response to different agroindustrial substrates. Biocatalysis and Agricultural Biotechnology, 2014, 3, 236-245.	3.1	41
12	A versatile system based on substrate formulation using agroindustrial wastes for protease production by Aspergillus niger under solid state fermentation. Biocatalysis and Agricultural Biotechnology, 2015, 4, 678-684.	3.1	39
13	Production and biochemical characterization of protease from Aspergillus oryzae: An evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatalysis and Agricultural Biotechnology, 2014, 3, 20-25.	3.1	37
14	Fungal L-asparaginase: Strategies for production and food applications. Food Research International, 2019, 126, 108658.	6.2	37
15	Comparison and synergistic effects of intact proteins and their hydrolysates on the functional properties and antioxidant activities in a simultaneous process of enzymatic hydrolysis. Food and Bioproducts Processing, 2014, 92, 80-88.	3.6	36
16	Improving the functional properties of milk proteins: focus on the specificities of proteolytic enzymes. Current Opinion in Food Science, 2015, 1, 64-69.	8.0	34
17	Biologically active compounds from white and black mustard grains: An optimization study for recovery and identification of phenolic antioxidants. Industrial Crops and Products, 2019, 135, 294-300.	5.2	32
18	Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. International Journal of Food Science and Technology, 2019, 54, 34-41.	2.7	31

RUANN JANSER SOARES DE

#	Article	IF	CITATIONS
19	Development of a novel probiotic milk product with enhanced antioxidant properties using mango peel as a fermentation substrate. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101564.	3.1	31
20	Antioxidant activities and functional properties of soy protein isolate hydrolysates obtained using microbial proteases. International Journal of Food Science and Technology, 2014, 49, 317-328.	2.7	30
21	Advantages of an acid protease from Aspergillus oryzae over commercial preparations for production of whey protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology, 2014, 3, 58-65.	3.1	29
22	Proteolytic enzymes positively modulated the physicochemical and antioxidant properties of spent yeast protein hydrolysates. Process Biochemistry, 2020, 91, 34-45.	3.7	29
23	Protease from <i>Aspergillus oryzae</i> : Biochemical Characterization and Application as a Potential Biocatalyst for Production of Protein Hydrolysates with Antioxidant Activities. Journal of Food Processing, 2014, 2014, 1-11.	2.0	28
24	Using response surface methodology to improve the L-asparaginase production by Aspergillus niger under solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 2018, 16, 31-36.	3.1	28
25	Synergistic actions of proteolytic enzymes for production of soy protein hydrolysates with antioxidant activities: An approach based on enzymes specificities. Biocatalysis and Agricultural Biotechnology, 2015, 4, 694-702.	3.1	27
26	Simplex centroid mixture design to improve l -asparaginase production in solid-state fermentation using agroindustrial wastes. Biocatalysis and Agricultural Biotechnology, 2015, 4, 528-534.	3.1	26
27	Invertase production by Aspergillus niger under solid state fermentation: Focus on physical–chemical parameters, synergistic and antagonistic effects using agro-industrial wastes. Biocatalysis and Agricultural Biotechnology, 2015, 4, 645-652.	3.1	23
28	Binary mixture of proteases increases the antioxidant properties of white bean (Phaseolus vulgaris L.) protein-derived peptides obtained by enzymatic hydrolysis. Biocatalysis and Agricultural Biotechnology, 2017, 10, 291-297.	3.1	22
29	Enzymatic hydrolysis of black cricket (<i>Gryllus assimilis</i>) proteins positively affects their antioxidant properties. Journal of Food Science, 2021, 86, 571-578.	3.1	22
30	Sonoprocessing of freshly squeezed orange juice: Ascorbic acid content, pectin methylesterase activity, rheological properties and cloud stability. Food Control, 2022, 131, 108391.	5.5	22
31	Biocatalytic action of proteases in ionic liquids: Improvements on their enzymatic activity, thermal stability and kinetic parameters. International Journal of Biological Macromolecules, 2018, 114, 124-129.	7.5	21
32	A multicomponent system based on a blend of agroindustrial wastes for the simultaneous production of industrially applicable enzymes by solid-state fermentation. Food Science and Technology, 2018, 38, 131-137.	1.7	18
33	Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination?. Food Research International, 2020, 133, 109115.	6.2	18
34	Bioconversion of Chicken Feather Meal by Aspergillus niger: Simultaneous Enzymes Production Using a Cost-Effective Feedstock Under Solid State Fermentation. Indian Journal of Microbiology, 2019, 59, 209-216.	2.7	17
35	Influence of edible coatings composed of alginate, galactomannans, cashew gum, and gelatin on the shelf- life of grape cultivar †Italia': Physicochemical and bioactive properties. LWT - Food Science and Technology, 2021, 152, 112315.	5.2	17
36	Production of black cricket protein hydrolysates with α-amylase, α-glucosidase and angiotensin I-converting enzyme inhibitory activities using a mixture of proteases. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102276.	3.1	17

#	Article	IF	CITATIONS
37	Effects of solid-state fermentation and extraction solvents on the antioxidant properties of lentils. Biocatalysis and Agricultural Biotechnology, 2020, 28, 101753.	3.1	15
38	Innovative and emerging applications of cannabis in food and beverage products: From an illicit drug to a potential ingredient for health promotion. Trends in Food Science and Technology, 2021, 115, 31-41.	15.1	15
39	Enzymatic treatment improves the antioxidant and antiproliferative activities of Adenanthera pavonina L. seeds. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101002.	3.1	14
40	Enzymatic Hydrolysis of Chicken Viscera to Obtain Added-Value Protein Hydrolysates with Antioxidant and Antihypertensive Properties. International Journal of Peptide Research and Therapeutics, 2020, 26, 717-725.	1.9	13
41	Improving the antioxidant and antidiabetic properties of common bean proteins by enzymatic hydrolysis using a blend of proteases. Biocatalysis and Biotransformation, 2021, 39, 100-108.	2.0	13
42	ALKALINE PROTEASE PRODUCTION BY Bacillus licheniformis LBA 46 IN A BENCH REACTOR: EFFECT OF TEMPERATURE AND AGITATION. Brazilian Journal of Chemical Engineering, 2019, 36, 615-625.	1.3	12
43	Functional properties and growth promotion of bifidobacteria and lactic acid bacteria strains by protein hydrolysates using a statistical mixture design. Food Bioscience, 2014, 7, 19-30.	4.4	11
44	Exploiting the chemical composition of essential oils from <i>Psidium cattleianum</i> and <i>Psidium guajava</i> and its antimicrobial and antioxidant properties. Journal of Food Science, 2021, 86, 4637-4649.	3.1	11
45	Caracterização do concentrado protéico de peixe obtido a partir dos resÃduos da filetagem de tilápia do Nilo. Semina:Ciencias Agrarias, 2012, 33, 697-704.	0.3	10
46	Enzyme-assisted extraction of biocomponents of lentils (<i>Lens culinaris</i> L.): Effect of process parameters on the recovery of compounds with antioxidant properties. Biocatalysis and Biotransformation, 2020, 38, 15-23.	2.0	10
47	Immobilization Techniques on Bioprocesses: Current Applications Regarding Enzymes, Microorganisms, and Essential Oils. Food and Bioprocess Technology, 2022, 15, 1449-1476.	4.7	10
48	Biochemical characterization of solvent, salt, surfactant and oxidizing agent tolerant proteases from Aspergillus niger produced in different agroindustrial wastes. Biocatalysis and Agricultural Biotechnology, 2016, 5, 94-98.	3.1	9
49	Production of Antioxidant Peptides from Pea Protein Using Protease from Bacillus licheniformis LBA 46. International Journal of Peptide Research and Therapeutics, 2020, 26, 435-443.	1.9	9
50	Enzymatic Hydrolysis of Proteins from Chicken Viscera in the Presence of an Ionic Liquid Enhanced Their Antioxidant Properties. Waste and Biomass Valorization, 2020, 11, 3183-3193.	3.4	9
51	Isomaltulose: From origin to application and its beneficial properties – A bibliometric approach. Food Research International, 2022, 155, 111061.	6.2	8
52	Combined biotransformation processes affect the antioxidant, antidiabetic and protease inhibitory properties of lentils. Process Biochemistry, 2021, 102, 250-260.	3.7	7
53	L-asparaginase from Aspergillus oryzae spp.: effects of production process and biochemical parameters. Preparative Biochemistry and Biotechnology, 2021, , 1-11.	1.9	7
54	Simultaneous hydrolysis of proteins from different sources to enhance their antibacterial properties through the synergistic action of bioactive peptides. Biocatalysis and Agricultural Biotechnology, 2016, 8, 209-212.	3.1	6

#	Article	IF	CITATIONS
55	Germinação de grãos: uma revisão sistemática de como os processos bioquÃmicos envolvidos afetam o conteúdo e o perfil de compostos fenólicos e suas propriedades antioxidantes. Brazilian Journal of Natural Sciences, 2020, 3, 287.	0.1	5
56	Statistical optimization of protein hydrolysis using mixture design: Development of efficient systems for suppression of lipid accumulation in 3T3-L1 adipocytes. Biocatalysis and Agricultural Biotechnology, 2016, 5, 17-23.	3.1	4
57	Sequential optimization strategy for the immobilization of Erwinia sp. D12 cells and the production of isomaltulose with high stability and prebiotic potential. Bioprocess and Biosystems Engineering, 2022, 45, 999-1009.	3.4	4
58	Optimization of the enzymatic hydrolysis of rice protein by different enzymes using the response surface methodology. 3 Biotech, 2018, 8, 372.	2.2	3
59	A new system of Erwinia sp. D12 cells immobilized in a matrix of alginate and algaroba gum (Prosopis) Tj ETQq1	L 0,784314 3.7	4 rgBT /Over
60	Insetos comestÃveis como potenciais fontes de proteÃnas para obtenção de peptÃdeos bioativos. Brazilian Journal of Food Technology, 0, 24, .	0.8	1
61	Kefir fermentation as a bioprocess to improve lentils antioxidant properties: is it worthwhile?. Brazilian Journal of Food Technology, 0, 23, .	0.8	1