Daniele D'agostino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8449248/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907. Science, 2017, 355, 817-819.	12.6	321
2	Managing, Analysing, and Integrating Big Data in Medical Bioinformatics: Open Problems and Future Perspectives. BioMed Research International, 2014, 2014, 1-13.	1.9	118
3	Discovery of a 2.8 s Pulsar in a 2 Day Orbit High-mass X-Ray Binary Powering the Ultraluminous X-Ray Source ULX-7 in M51. Astrophysical Journal, 2020, 895, 60.	4.5	106
4	Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM project. Natural Hazards and Earth System Sciences, 2015, 15, 537-555.	3.6	47
5	Combining Edge and Cloud computing for low-power, cost-effective metagenomics analysis. Future Generation Computer Systems, 2019, 90, 79-85.	7.5	32
6	Hybrid Clouds brokering: Business opportunities, QoS and energy-saving issues. Simulation Modelling Practice and Theory, 2013, 39, 121-134.	3.8	29
7	Cloud Infrastructures for <i>In Silico</i> Drug Discovery: Economic and Practical Aspects. BioMed Research International, 2013, 2013, 1-19.	1.9	25
8	Low-power portable devices for metagenomics analysis: Fog computing makes bioinformatics ready for the Internet of Things. Future Generation Computer Systems, 2018, 88, 467-478.	7.5	25
9	Image-Based Surface Matching Algorithm Oriented to Structural Biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1004-1016.	3.0	22
10	Job–resource matchmaking on Grid through two-level benchmarking. Future Generation Computer Systems, 2010, 26, 1165-1179.	7.5	20
11	Scheduling strategies for enabling meteorological simulation on hybrid clouds. Journal of Computational and Applied Mathematics, 2015, 273, 438-451.	2.0	20
12	Delivering cloud services with QoS requirements: Business opportunities, architectural solutions and energy-saving aspects. Future Generation Computer Systems, 2016, 55, 403-427.	7.5	20
13	An MPI–CUDA library for image processing on HPC architectures. Journal of Computational and Applied Mathematics, 2015, 273, 414-427.	2.0	19
14	Setting Up an Hydro-Meteo Experiment in Minutes: The DRIHM e-Infrastructure for HM Research. , 2014, , ,		16
15	The DRIHM Project: A Flexible Approach to Integrate HPC, Grid and Cloud Resources for Hydro-Meteorological Research. , 2014, , .		16
16	Heterogeneous architectures for computational intensive applications: A cost-effectiveness analysis. Journal of Computational and Applied Mathematics, 2014, 270, 63-77.	2.0	16
17	EXTraS discovery of two pulsators in the direction of the LMC: a Be/X-ray binary pulsar in the LMC and a candidate double-degenerate polar in the foreground. Astronomy and Astrophysics, 2017, 598, A69.	5.1	15
18	Science with the EXTraS Project: Exploring the X-Ray Transient and Variable Sky. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 291-295.	0.3	15

#	Article	IF	CITATIONS
19	EXTraS discovery of an 1.2-s X-ray pulsar in MÂ31. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L5-L9.	3.3	14
20	DRIHM(2US): An e-Science Environment for Hydrometeorological Research on High-Impact Weather Events. Bulletin of the American Meteorological Society, 2017, 98, 2149-2166.	3.3	13
21	The Ultraluminous X-Ray Sources Population of the Galaxy NGC 7456. Astrophysical Journal, 2020, 890, 166.	4.5	13
22	A QoS-aware broker for hybrid clouds. Computing (Vienna/New York), 2013, 95, 89-109.	4.8	12
23	SoC-based computing infrastructures for scientific applications and commercial services: Performance and economic evaluations. Future Generation Computer Systems, 2019, 96, 11-22.	7.5	12
24	Advances in distributed computing with modern drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 9-22.	5.0	12
25	Integrating Heterogeneous Weather-Sensors Data into a Smart-City App. , 2017, , .		11
26	From Lesson Learned to the Refactoring of the DRIHM Science Gateway for Hydro-meteorological Research. Journal of Grid Computing, 2016, 14, 575-588.	3.9	10
27	Json-GUI—A module for the dynamic generation of form-based web interfaces. SoftwareX, 2019, 9, 28-34.	2.6	10
28	A Grid framework to enable parallel and concurrent TMA image analyses. International Journal of Grid and Utility Computing, 2009, 1, 261.	0.2	8
29	High-Performance Computing and Big Data in Omics-Based Medicine. BioMed Research International, 2014, 2014, 1-2.	1.9	8
30	Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems. BioMed Research International, 2014, 2014, 1-10.	1.9	8
31	Lessons learned implementing a science gateway for hydroâ€meteorological research. Concurrency Computation Practice and Experience, 2016, 28, 2014-2023.	2.2	8
32	Discovery of Periodic Dips in the Brightest Hard X-Ray Source of M31 with EXTraS. Astrophysical Journal Letters, 2017, 851, L27.	8.3	8
33	Parallel isosurface extraction for 3D data analysis workflows in distributed environments. Concurrency Computation Practice and Experience, 2011, 23, 1284-1310.	2.2	7
34	Delivering Cloud Services with QoS Requirements: An Opportunity for ICT SMEs. Lecture Notes in Computer Science, 2012, , 197-211.	1.3	7
35	Results from DROXO. Astronomy and Astrophysics, 2016, 587, A36.	5.1	7
36	An Object Interface for Interoperability of Image Processing Parallel Library in a Distributed Environment. Lecture Notes in Computer Science, 2005, , 584-591.	1.3	7

#	Article	IF	CITATIONS
37	Using Apache Airavata and EasyGateway for the creation of complex science gateway front-end. Future Generation Computer Systems, 2019, 94, 910-919.	7.5	6
38	Parallel decimation of 3D meshes for efficient web-based isosurface extraction. Advances in Parallel Computing, 2004, 13, 159-166.	0.3	5
39	Latest advances in distributed, parallel, and graphic processing unit accelerated approaches to computational biology. Concurrency Computation Practice and Experience, 2014, 26, 1699-1704.	2.2	5
40	MOEA-Based Brokering for Hybrid Clouds. , 2017, , .		5
41	A secure cloud-edges computing architecture for metagenomics analysis. Future Generation Computer Systems, 2020, 111, 919-930.	7.5	5
42	CUDA Accelerated Blobby Molecular Surface Generation. Lecture Notes in Computer Science, 2012, , 347-356.	1.3	5
43	An Online Parallel Algorithm for Remote Visualization of Isosurfaces. Lecture Notes in Computer Science, 2003, , 160-169.	1.3	5
44	High performance workflow implementation for protein surface characterization using grid technology. BMC Bioinformatics, 2005, 6, S19.	2.6	4
45	Using Parallel Isosurface Extraction in Superficial Molecular Modeling. , 0, , .		4
46	Images Based System for Surface Matching in Macromolecular Screening. , 2008, , .		4
47	A parallel protein surface reconstruction system. International Journal of Bioinformatics Research and Applications, 2008, 4, 221.	0.2	4
48	CUDA accelerated molecular surface generation. Concurrency Computation Practice and Experience, 2014, 26, 1819-1831.	2.2	4
49	Using a Model MAP to prepare hydro-meteorological models for generic use. Environmental Modelling and Software, 2015, 73, 260-271.	4.5	4
50	Exploiting Docker containers over Grid computing for a comprehensive study of chromatin conformation in different cell types. Journal of Parallel and Distributed Computing, 2019, 134, 116-127.	4.1	4
51	A science gateway for Exploring the X-ray Transient and variable sky using EGI Federated Cloud. Future Generation Computer Systems, 2019, 94, 868-878.	7.5	4
52	Load Balancing and Computing Strategies in Pipeline Optimization for Parallel Visualization of 3D Irregular Meshes. Lecture Notes in Computer Science, 2005, , 457-466.	1.3	4
53	Using a Structured Programming Environment for Parallel Remote Visualization. Lecture Notes in Computer Science, 2004, , 477-486.	1.3	4

54 A Distributed Approach for Structured Resource Discovery on Grid. , 2008, , .

3

#	Article	IF	CITATIONS
55	A Hybrid Parallel Implementation of Model Selection for Support Vector Machines. , 2015, , .		3
56	A parallel isosurface extraction component for visualization pipelines executing on GPU clusters. Journal of Computational and Applied Mathematics, 2015, 273, 383-393.	2.0	3
57	Implementing a Space-Aware Stochastic Simulator on Low-Power Architectures: A Systems Biology Case Study. , 2017, , .		3
58	A stakeholder consultation into hydro-meteorological e-science environments. Earth Science Informatics, 2017, 10, 219-234.	3.2	3
59	WS-PGRADE/gUSE in European Projects. , 2014, , 235-254.		3
60	Smart data caching in archeological wireless applications: the PAST solution. , 2003, , .		2
61	TMAinspect, an EGEE Framework for Tissue MicroArray Image Handling. , 2008, , .		2
62	Managing Networks of Mobiles Entities Using the HyVonNe P2P Architecture. , 2008, , .		2
63	Parallel Decomposition of 3D Surfaces in Images of Local Descriptors for Molecular Screening. , 2009,		2
64	Parallelization of the SSAKE Genomics Application. , 2011, , .		2
65	DRIHM: Distributed Research Infrastructure for Hydro-Meteorology. , 2012, , .		2
66	A Parallel Implementation of the Stau-DPP Stochastic Simulator for the Modelling of Biological Systems. , 2013, , .		2
67	The WNoDeS Cloud Virtualization Framework: A Macromolecular Surface Analysis Application Case Study. , 2014, , .		2
68	Clustering Protein Structures with Hadoop. Lecture Notes in Computer Science, 2016, , 141-153.	1.3	2
69	Porting bioinformatics applications from grid to cloud: A macromolecular surface analysis application case study. International Journal of High Performance Computing Applications, 2017, 31, 182-195.	3.7	2
70	A citizen science exploration of the X-ray transient sky using the EXTraS science gateway. Future Generation Computer Systems, 2020, 111, 806-818.	7.5	2
71	Special issue on multimedia fog/edge computing systems. Multimedia Systems, 2020, 26, 1-2.	4.7	2
72	Latest advances in parallel, distributed, and networkâ€based processing. Concurrency Computation Practice and Experience, 2020, 32, e5683.	2.2	2

#	Article	IF	CITATIONS
73	Hardware and Software Solutions for Energy-Efficient Computing in Scientific Programming. Scientific Programming, 2021, 2021, 1-9.	0.7	2
74	Editorial: Heterogeneous Computing for Al and Big Data in High Energy Physics. Frontiers in Big Data, 2021, 4, 652881.	2.9	2
75	Performance and Economic Evaluations in Adopting Low Power Architectures: A Real Case Analysis. Lecture Notes in Computer Science, 2017, , 177-189.	1.3	2
76	An overview of the EXTraS project: Exploring the X-ray Transient and Variable Sky. , 2015, , .		2
77	Enabling Parallel TMA Image Analysis in a Grid Environment. , 2008, , .		1
78	MicroRNA-Target Interaction: A Parallel Approach for Computing Pairing Energy. , 2016, , .		1
79	Low-Power Architectures for miRNA-Target Genome Wide Analysis. , 2017, , .		1
80	Low-Power Storage Bricks and Bioinformatics on Systems-On-Chip. , 2018, , .		1
81	Parallel Computing in Deep Learning: Bioinformatics Case Studiesa. , 2019, , .		1
82	On lowâ€power SoCs as storage bricks for Bioinformatics. Concurrency Computation Practice and Experience, 2020, 32, e5415.	2.2	1
83	Advantages of using graph databases to explore chromatin conformation capture experiments. BMC Bioinformatics, 2021, 22, 43.	2.6	1
84	NeoHiC: A Web Application for the Analysis of Hi-C Data. Lecture Notes in Computer Science, 2020, , 98-107.	1.3	1
85	A Web-based isosurface extraction system for heterogeneous clients. , 2003, , .		0
86	Using a CCA Compliant Framework for Parallel Remote Visualization. , 0, , .		0
87	A Grid Service based Parallel Molecular Surface Reconstruction System. , 2008, , .		0
88	Efficient management of resources and entities using the HyVonNe P2P architecture. International Journal of Grid and Utility Computing, 2009, 1, 216.	0.2	0
89	A Parallel Algorithm for Molecular Surface Matching Through Image Representation. , 2010, , .		0

90 Efficiency-Aware Jobs Allocation for e-Science Environments. , 2012, , .

0

Daniele D'agostino

#	Article	IF	CITATIONS
91	A CUDA-based Implementation of the SSAKE Genomics Application. , 2012, , .		0
92	A CUDA Implementation of the Spatial TAU-Leaping in Crowded Compartments (STAUCC) Simulator. , 2014, , .		0
93	Profiling e-Science infrastructures with kernel and application benchmarks. International Journal of Grid and Utility Computing, 2014, 5, 123.	0.2	0
94	Computing Empirical P-Values for Estimating Gene-Gene Interactions in Genome-Wide Association Studies: A Parallel Computing Approach. , 2018, , .		0
95	Guest editorials: Special issue on fog/edge networking for multimedia applications. Peer-to-Peer Networking and Applications, 2019, 12, 1477-1479.	3.9	0
96	A Local Decision Algorithm for Maximum Lifetime in ad Hoc Networks. Lecture Notes in Computer Science, 2002, , 947-956.	1.3	0
97	A Performance-Based Methodology to Improve Grid Exploitation. Lecture Notes in Computer Science, 2009, , 43-55.	1.3	0
98	Performance Based Matchmaking on Grid. Lecture Notes in Computer Science, 2010, , 174-183.	1.3	0
99	A Fine-Grained CUDA Implementation of the Multi-objective Evolutionary Approach NSGA-II: Potential Impact for Computational and Systems Biology Applications. Lecture Notes in Computer Science, 2015, , 273-284.	1.3	0
100	Modelling of Protein Surface Using Parallel Heterogeneous Architectures. , 2015, , 189-199.		0