Jinqiu Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/844892/publications.pdf

Version: 2024-02-01

	687363	610901
612	13	24
citations	h-index	g-index
30	30	648
docs citations	times ranked	citing authors
	citations 30	612 13 citations h-index 30 30

#	Article	IF	CITATIONS
1	Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydrate Polymers, 2016, 151, 725-734.	10.2	152
2	High bio-content polyurethane (PU) foam made from bio-polyol and cellulose nanocrystals (CNCs) via microwave liquefaction. Materials and Design, 2018, 138, 11-20.	7.0	66
3	Effect of fabricated density and bamboo species on physical–mechanical properties of bamboo fiber bundle reinforced composites. Journal of Materials Science, 2016, 51, 7480-7490.	3.7	43
4	Bio-based UV protective films prepared with polylactic acid (PLA) and Phoebe zhennan extractives. International Journal of Biological Macromolecules, 2018, 119, 582-587.	7. 5	40
5	Preparation of flexible and UV-blocking films from lignin-containing cellulose incorporated with tea polyphenol/citric acid. International Journal of Biological Macromolecules, 2022, 207, 917-926.	7.5	37
6	Characterization of Microwave Liquefied Bamboo Residue and Its Potential Use in the Generation of Nanofibrillated Cellulosic Fiber. ACS Sustainable Chemistry and Engineering, 2016, 4, 3477-3485.	6.7	31
7	Effects of characteristic inhomogeneity of bamboo culm nodes on mechanical properties of bamboo fiber reinforced composite. Journal of Forestry Research, 2015, 26, 1057-1060.	3.6	23
8	Characterization of Biobased Polyurethane Foams Employing Lignin Fractionated from Microwave Liquefied Switchgrass. International Journal of Polymer Science, 2017, 2017, 1-8.	2.7	23
9	Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures. Journal of Forestry Research, 2015, 26, 261-265.	3.6	20
10	Comparative analysis of modern and ancient buried Phoebe zhennan wood: surface color, chemical components, infrared spectroscopy, and essential oil composition. Journal of Forestry Research, 2015, 26, 501-507.	3.6	17
11	Agricultural and Forest Residues towards Renewable Chemicals and Materials Using Microwave Liquefaction. International Journal of Polymer Science, 2019, 2019, 1-16.	2.7	17
12	Liquefaction behaviors of bamboo residues in a glycerolâ€based solvent using microwave energy. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
13	Differences in physical–mechanical properties of bamboo scrimbers with response to bamboo maturing process. European Journal of Wood and Wood Products, 2018, 76, 1137-1143.	2.9	14
14	Dilute Alkali and Hydrogen Peroxide Treatment of Microwave Liquefied Rape Straw Residue for the Extraction of Cellulose Nanocrystals. Journal of Nanomaterials, 2017, 2017, 1-9.	2.7	12
15	Transparent and UV-absorbing nanocellulose films prepared by directly dissolving microwave liquefied bamboo in TBAA/DMSO co-solvent system. Industrial Crops and Products, 2021, 171, 113899.	5.2	11
16	Effect of accelerated aging on selected physical and mechanical properties of Bambusa rigida bamboo. European Journal of Wood and Wood Products, 2014, 72, 547-549.	2.9	10
17	Analysis of Phyllostachys pubescens Bamboo Residues for Liquefaction: Chemical Components, Infrared Spectroscopy, and Thermogravimetry. BioResources, 2013, 8, .	1.0	9

Microstructure and physicochemical properties of the anisotropic moso bamboo (Phyllostachys) Tj ETQq0 0 0 rgBT_2.9verlock₉10 Tf 50 6

#	Article	IF	CITATIONS
19	Improving the anti-mould property of Moso bamboo surface by using a bamboo green colour preservation approach. Wood Material Science and Engineering, 2023, 18, 161-171.	2.3	9
20	Thermal Degradation Kinetics of Urea–Formaldehyde Resins Modified by Almond Shells. ACS Omega, 2021, 6, 25702-25709.	3.5	8
21	Kinetics and Thermodynamic Analysis of Recent and Ancient Buried <i>Phoebe zhennan</i> Omega, 2020, 5, 20943-20952.	3.5	7
22	Enhancement of magnetic film with light penetration by immobilization of Fe3O4 nanoparticles in a spherical bamboo nanocellulose network. Cellulose, 2021, 28, 4179-4189.	4.9	7
23	Anatomical characteristics and physical–mechanical properties of Neosinocalamus affinis from Southwest China. European Journal of Wood and Wood Products, 2017, 75, 659-662.	2.9	6
24	Characterization of Ethyl Acetate and Trichloromethane Extracts from Phoebe zhennan Wood Residues and Application on the Preparation of UV Shielding Films. Molecules, 2020, 25, 1145.	3.8	6
25	Preparation and thermal degradation property analysis of the tea-based melamine-modified urea–formaldehyde (TMUF) resin. Journal of Thermal Analysis and Calorimetry, 2020, 146, 1845.	3.6	5
26	Significant evaluation of three factors affecting the pre-curing behavior of urea formaldehyde resin: temperature, solid content, and pH. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1463-1470.	3.6	4
27	Thermal decomposition characteristics of microwave liquefied rape straw residues using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1911-1918.	3.6	4
28	Chemical composition, UV/vis absorptivity, and antioxidant activity of essential oils from bark and leaf of <i>phoebe</i> zhennan S. K. Lee & D. Wei. Natural Product Research, 2020, 34, 876-879.	1.8	3
29	Fractionation and Potential Applications of Components from Microwave Liquefaction of Chromate Copper Arsenate-Treated Wood. BioResources, 2018, 13, .	1.0	2
30	Preliminary evaluation of liquefaction behavior of Eucalyptus grandis bark in glycerol. Journal of Forestry Research, 2020, 31, 687-691.	3.6	1