Dan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/844878/publications.pdf

Version: 2024-02-01

279701 233338 2,189 45 46 23 citations h-index g-index papers 47 47 47 2663 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Subinhibitory Concentrations of Disinfectants Promote the Horizontal Transfer of Multidrug Resistance Genes within and across Genera. Environmental Science & Environmental Science & 2017, 51, 570-580.	4.6	323
2	Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environmental Pollution, 2018, 237, 74-82.	3.7	271
3	Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena. Environmental Science & Environmental Pollutants in Resistance Phenomena & Environmental Ph	4.6	136
4	Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis. Journal of Hazardous Materials, 2019, 369, 9-16.	6.5	89
5	Diverse and abundant antibiotics and antibiotic resistance genes in an urban water system. Journal of Environmental Management, 2019, 231, 494-503.	3.8	85
6	Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant. Journal of Environmental Sciences, 2013, 25, 1319-1325.	3.2	83
7	Photochemical Transformation of Aminoglycoside Antibiotics in Simulated Natural Waters. Environmental Science & Technology, 2016, 50, 2921-2930.	4.6	80
8	DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide. Water Research, 2021, 188, 116549.	5.3	77
9	Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Science of the Total Environment, 2017, 605-606, 172-179.	3.9	73
10	Primary Particulate Matter Emitted from Heavy Fuel and Diesel Oil Combustion in a Typical Container Ship: Characteristics and Toxicity. Environmental Science & Environmental Science & 2018, 52, 12943-12951.	4.6	69
11	Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms. Environment International, 2020, 138, 105544.	4.8	67
12	Age and Sex-Specific Relationships between Phthalate Exposures and Obesity in Chinese Children at Puberty. PLoS ONE, 2014, 9, e104852.	1.1	58
13	Nano-metal oxides induce antimicrobial resistance via radical-mediated mutagenesis. Environment International, 2018, 121, 1162-1171.	4.8	55
14	Degradation of ciprofloxacin by manganese(III) intermediate: Insight into the potential application of permanganate/bisulfite process. Chemical Engineering Journal, 2018, 339, 144-152.	6.6	54
15	UV inactivation and resistance of rotavirus evaluated by integrated cell culture and real-time RT-PCR assay. Water Research, 2009, 43, 3261-3269.	5.3	53
16	Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR). Journal of Environmental Sciences, 2014, 26, 299-306.	3.2	51
17	Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays. Chemosphere, 2016, 144, 2165-2174.	4.2	50
18	Gender-specific relationship between prenatal exposure to phthalates and intrauterine growth restriction. Pediatric Research, 2014, 76, 401-408.	1.1	46

#	Article	IF	CITATIONS
19	Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes. Environment International, 2018, 114, 280-287.	4.8	44
20	Detection of Infectious Adenoviruses in Environmental Waters by Fluorescence-Activated Cell Sorting Assay. Applied and Environmental Microbiology, 2010, 76, 1442-1448.	1.4	40
21	The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes. Science of the Total Environment, 2019, 683, 116-123.	3.9	35
22	Concentration of viruses from environmental waters using nanoalumina fiber filters. Journal of Microbiological Methods, 2010, 81, 33-38.	0.7	33
23	An integrated cell culture and reverse transcription quantitative PCR assay for detection of infectious rotaviruses in environmental waters. Journal of Microbiological Methods, 2010, 82, 59-63.	0.7	33
24	Toxicity Assessment of Nano-ZnO Exposure on the Human Intestinal Microbiome, Metabolic Functions, and Resistome Using an In Vitro Colon Simulator. Environmental Science & Env	4.6	24
25	Antimicrobial resistance: A new threat from disinfection byproducts and disinfection of drinking water?. Current Opinion in Environmental Science and Health, 2019, 7, 83-91.	2.1	23
26	Exposure to concentrated ambient PM2.5 (CAPM) induces intestinal disturbance via inflammation and alternation of gut microbiome. Environment International, 2022, 161, 107138.	4.8	22
27	Changes of microbial composition during wastewater reclamation and distribution systems revealed by high-throughput sequencing analyses. Frontiers of Environmental Science and Engineering, 2016, 10, 539-547.	3.3	21
28	Open-Surface River Extraction Based on Sentinel-2 MSI Imagery and DEM Data: Case Study of the Upper Yellow River. Remote Sensing, 2020, 12, 2737.	1.8	21
29	Over 300kHz GaN device based resonant bidirectional DCDC converter with integrated magnetics. , 2016, , .		20
30	Extracellular microcystin prediction based on toxigenic Microcystis detection in a eutrophic lake. Scientific Reports, 2016, 6, 20886.	1.6	16
31	Synthesis and biological research of novel azaacridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 3437-3446.	1.4	16
32	Online recognition of drainage type based on UV-vis spectra and derivative neural network algorithm. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	15
33	Evaluation of the infectivity, gene and antigenicity persistence of rotaviruses by free chlorine disinfection. Journal of Environmental Sciences, 2011, 23, 1691-1698.	3.2	14
34	River Extraction under Bankfull Discharge Conditions Based on Sentinel-2 Imagery and DEM Data. Remote Sensing, 2021, 13, 2650.	1.8	13
35	Influences and mechanisms of nanofullerene on the horizontal transfer of plasmid-encoded antibiotic resistance genes between E. coli strains. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	11
36	Probabilistic ecological risk assessment of effluent toxicity of a wastewater reclamation plant based on process modeling. Water Research, 2016, 100, 367-376.	5. 3	10

#	Article	IF	CITATIONS
37	Complexation of Fe(III)/Catechols in atmospheric aqueous phase and the consequent cytotoxicity assessment in human bronchial epithelial cells (BEAS-2B). Ecotoxicology and Environmental Safety, 2020, 202, 110898.	2.9	10
38	Accurate Removal of Trace $17\hat{l}^2$ -Estradiol and Estrogenic Activity in Blended Systems under a Photoelectrocatalytic Circulating Flow. Environmental Science & Environmental Science, 2021, 55, 12585-12595.	4.6	10
39	The decay of airborne bacteria and fungi in a constant temperature and humidity test chamber. Environment International, 2021, 157, 106816.	4.8	10
40	Application of internal standard method in recombinant luminescent bacteria test. Journal of Environmental Sciences, 2015, 35, 128-134.	3.2	5
41	Fuel Fine Particulate Matter Induces Ovary Dysfunction via Metal Elements Imbalance and Steroid Biosynthesis Signaling Pathway Inhibition. Environmental Science and Technology Letters, 2019, 6, 26-33.	3.9	4
42	Mechanistic toxicity assessment of fine particulate matter emitted from fuel combustion via pathway-based approaches in human cells. Science of the Total Environment, 2022, 806, 150214.	3.9	4
43	Nano-Al2O3 particles affect gut microbiome and resistome in an in vitro simulator of the human colon microbial ecosystem. Journal of Hazardous Materials, 2022, 439, 129513.	6.5	4
44	NOx and H2S formation in the reductive zone of air-staged combustion of pulverized blended coals. Frontiers in Energy, 2021, 15, 4-13.	1.2	3
45	Overlooked Significant Impact of Trace Metals on the Bacterial Community of PM _{2.5} in Highâ€√ime Resolution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035408.	1.2	3
46	Direct detection of adenovirus in environmental waste waters by portable optical fiber sensor platform., $2013,$		2