
Luiz Fernando Fernando Gorup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8448206/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 2009, 34, 103-110.	2.5	665
2	Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of <i>Candida albicans</i> and <i>Candida glabrata</i> . Biofouling, 2011, 27, 711-719.	2.2	186
3	Silver Distribution and Release from an Antimicrobial Denture Base Resin Containing Silver Colloidal Nanoparticles. Journal of Prosthodontics, 2012, 21, 7-15.	3.7	135
4	Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012, 54, 383-391.	2.2	94
5	Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method. Journal of Colloid and Interface Science, 2011, 360, 355-358.	9.4	89
6	Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against <i><scp>C</scp>andida albicans</i> and <i><scp>C</scp>andida glabrata</i> biofilms. Mycoses, 2013, 56, 672-680.	4.0	83
7	The effect of silver nanoparticles and nystatin on mixed biofilms of <i>Candida glabrata</i> and <i>Candida albicans</i> on acrylic. Medical Mycology, 2013, 51, 178-184.	0.7	72
8	Silver colloidal nanoparticles: effect on matrix composition and structure of <i>Candida albicans</i> and <i>Candida glabrata</i> biofilms. Journal of Applied Microbiology, 2013, 114, 1175-1183.	3.1	54
9	Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. Journal of Prosthodontic Research, 2015, 59, 42-48.	2.8	50
10	InÂVitro and InÂVivo Toxicity Evaluation ofÂColloidal Silver Nanoparticles Used inÂEndodontic Treatments. Journal of Endodontics, 2016, 42, 953-960.	3.1	50
11	Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science and Engineering C, 2021, 118, 111341.	7.3	37
12	Coupled electronic and morphologic changes in graphene oxide upon electrochemical reduction. Carbon, 2015, 91, 11-19.	10.3	25
13	Antimicrobial Potential and Cytotoxicity of Silver Nanoparticles Phytosynthesized by Pomegranate Peel Extract. Antibiotics, 2018, 7, 51.	3.7	23
14	Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Medical Mycology, 2014, 52, 627-635.	0.7	22
15	Nanosynthesis of Silver-Calcium Glycerophosphate: Promising Association against Oral Pathogens. Antibiotics, 2018, 7, 52.	3.7	22
16	Effect of the addition of nano-sized sodium hexametaphosphate to fluoride toothpastes on tooth demineralization: an in vitro study. Clinical Oral Investigations, 2017, 21, 1821-1827.	3.0	21
17	Green synthesis of silver nanoparticles combined to calcium glycerophosphate: antimicrobial and antibiofilm activities. Future Microbiology, 2018, 13, 345-357.	2.0	21
18	Adhesion of Candida biofilm cells to human epithelial cells and polystyrene after treatment with silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 114, 410-412.	5.0	17

Luiz Fernando Fernando

#	Article	IF	CITATIONS
19	Sodium trimetaphosphate and hexametaphosphate impregnated with silver nanoparticles: characteristics and antimicrobial efficacy. Biofouling, 2018, 34, 299-308.	2.2	15
20	New Approach of the Oxidant Peroxo Method (OPM) Route to Obtain Ti(OH) ₄ Nanoparticles with High Photocatalytic Activity under Visible Radiation. International Journal of Photoenergy, 2018, 2018, 1-10.	2.5	14
21	Anticaries effect of toothpaste with nano-sized sodium hexametaphosphate. Clinical Oral Investigations, 2019, 23, 3535-3542.	3.0	14
22	Kinetic Control of Microtubule Morphology Obtained by Assembling Gold Nanoparticles on Living Fungal Biotemplates. Bioconjugate Chemistry, 2016, 27, 2337-2345.	3.6	13
23	Synergy of Biodegradable Polymer Coatings with Quaternary Ammonium Salts Mediating Barrier Function Against Bacterial Contamination and Dehydration of Eggs. Food and Bioprocess Technology, 2020, 13, 2065-2081.	4.7	13
24	Enhanced reactivity of peroxo-modified surface of titanium dioxide nanoparticles used to synthesize ultrafine bismuth titanate powders at lower temperatures. Ceramics International, 2016, 42, 15767-15772.	4.8	12
25	Photoelectrochemical removal of 17β-estradiol using a RuO2-graphene electrode. Chemosphere, 2016, 162, 99-104.	8.2	11
26	Controlling the Electronic, Structural, and Optical Properties of Novel MgTiO ₃ /LaNiO ₃ Nanostructured Films for Enhanced Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 2612-2620.	5.0	11
27	Stability of di-butyl-dichalcogenide-capped gold nanoparticles: experimental data and theoretical insights. RSC Advances, 2020, 10, 6259-6270.	3.6	11
28	Antimicrobial Activity of Compounds Containing Silver Nanoparticles and Calcium Glycerophosphate in Combination with Tyrosol. Indian Journal of Microbiology, 2019, 59, 147-153.	2.7	9
29	Nanostructured Assemblies of Gold and Silver Nanoparticles for Plasmon Enhanced Spectroscopy Using Living Biotemplates. Colloids and Interfaces, 2017, 1, 4.	2.1	8
30	Influence of deposition parameters on the structure and microstructure of Bi12TiO20 films obtained by pulsed laser deposition. Ceramics International, 2019, 45, 3510-3517.	4.8	8
31	Heterogeneous Microtubules of Self-assembled Silver and Gold Nanoparticles Using Alive Biotemplates. Materials Research, 2018, 21, .	1.3	4
32	Green and Chemical Silver Nanoparticles and Pomegranate Formulations to Heal Infected Wounds in Diabetic Rats. Antibiotics, 2021, 10, 1343.	3.7	4
33	The importance of preventing and controlling biofilm in wounds. , 2016, , 79-105.		3
34	Nanostructured Functional Materials: Silver Nanoparticles in Polymer for the Generation of Antimicrobial Characteristics. , 2017, , 271-292.		3
35	Caracterização fÃsico-quÃmica de biocurativos dérmo-epidérmicos de Quitosana, Xantana e Beta-Glucana. Brazilian Journal of Health Review, 2020, 3, 5631-5650.	0.1	1
36	Silver Nanoparticles to Fight Candida Coinfection in the Oral Cavity. , 2015, , 283-295.		0

3

#	Article	IF	CITATIONS
37	Silver and Polyphosphate Nanoparticles. , 0, , 7263-7274.		0
38	Conductive nanopaints: A remarkable coating. , 2022, , 429-449.		0
39	Nanocatalysts for fuel cells. , 2022, , 579-604.		0