Diego Blas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8447822/publications.pdf

Version: 2024-02-01

55	4,187 citations	27	54
papers		h-index	g-index
56	56	56	3078 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 034-034.	5.4	1,378
2	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451
3	AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum Technology, 2020, 7, .	6.3	190
4	Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations. Physical Review D, 2014, 89, .	4.7	161
5	Strong Binary Pulsar Constraints on Lorentz Violation in Gravity. Physical Review Letters, 2014, 112, 161101.	7.8	128
6	Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Physical Review D, 2018, 98, .	4.7	119
7	Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 028-028.	5.4	116
8	Renormalization of Hořava gravity. Physical Review D, 2016, 93, .	4.7	110
9	Refined bounds on MeV-scale thermal dark sectors from BBN and the CMB. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 004-004.	5.4	103
10	Cosmological perturbation theory at three-loop order. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 010-010.	5.4	88
11	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	26.7	82
12	Ultralight Dark Matter Resonates with Binary Pulsars. Physical Review Letters, 2017, 118, 261102.	7.8	80
13	Scale-invariant alternatives to general relativity. Physical Review D, 2011, 84, .	4.7	70
14	Structure formation with massive neutrinos: going beyond linear theory. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 039-039.	5.4	61
15	Time-sliced perturbation theory for large scale structure I: general formalism. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 052-052.	5.4	61
16	Gravitational radiation in Hořava gravity. Physical Review D, 2011, 84, .	4.7	60
17	On the non-linear scale of cosmological perturbation theory. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 024-024.	5.4	59
18	Renormalization of gauge theories in the background-field approach. Journal of High Energy Physics, 2018, 2018, 1.	4.7	54

#	Article	IF	CITATIONS
19	Phenomenology of theories of gravity without Lorentz invariance: The preferred frame case. International Journal of Modern Physics D, 2014, 23, 1443009.	2.1	52
20	Large scale structure from viscous dark matter. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 049-049.	5.4	52
21	Bounding the Speed of Gravity with Gravitational Wave Observations. Physical Review Letters, 2017, 119, 161102.	7.8	50
22	Detecting high-frequency gravitational waves with microwave cavities. Physical Review D, 2022, 105, .	4.7	50
23	Constraints on millicharged dark matter and axionlike particles from timing of radio waves. Physical Review D, 2019, 100, .	4.7	49
24	Hořava Gravity is Asymptotically Free in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2+<mml:mn>1</mml:mn><td>w>7≮∤mml:</td><td>:mata></td></mml:mn></mml:mrow></mml:math>	w>7≮ ∤ mml:	:mata>
25	Publisher's Note: Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations [Phys. Rev. D 89 , 084067 (2014)]. Physical Review D, 2014, 90, .	4.7	42
26	Testing Lorentz invariance of dark matter. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 057-057.	5.4	38
27	New constraints on the mass of fermionic dark matter from dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1188-1201.	4.4	25
28	The effect of mission duration on LISA science objectives. General Relativity and Gravitation, 2022, 54, 3.	2.0	24
29	Bridging the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow>ν<mml:mi>Hz</mml:mi></mml:mrow></mml:math> Gap in the Gravitational-Wave Landscape with Binary Resonances. Physical Review Letters, 2022, 128, 101103.	7.8	23
30	Electromagnetic signatures of dark photon superradiance. Physical Review D, 2021, 104, .	4.7	22
31	Heat kernel methods for Lifshitz theories. Journal of High Energy Physics, 2017, 2017, 1.	4.7	21
32	Secular effects of ultralight dark matter on binary pulsars. Physical Review D, 2020, 101, .	4.7	21
33	Imprints of axion superradiance in the CMB. Physical Review D, 2020, 102, .	4.7	20
34	First constraints on small-scale non-Gaussianity from UV galaxy luminosity functions. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 010-010.	5.4	20
35	New Roads to the Small-scale Universe: Measurements of the Clustering of Matter with the High-redshift UV Galaxy Luminosity Function. Astrophysical Journal Letters, 2022, 928, L20.	8.3	19
36	New binary pulsar constraints on Einstein- \tilde{A}^{\dagger}_{l} ther theory after GW170817. Classical and Quantum Gravity, 2021, 38, 195003.	4.0	18

#	Article	IF	CITATIONS
37	Quenching mechanisms of photon superradiance. Physical Review D, 2020, 102, .	4.7	18
38	Binary pulsars as probes of a Galactic dark matter disk. Physics of the Dark Universe, 2018, 19, 1-11.	4.9	17
39	Exploring the ultra-light to sub-MeV dark matter window with atomic clocks and co-magnetometers. Journal of High Energy Physics, 2019, 2019, 1.	4.7	17
40	Galaxy luminosity function pipeline for cosmology and astrophysics. Physical Review D, 2022, 105, .	4.7	17
41	Assessing the Fornax globular cluster timing problem in different models of dark matter. Physical Review D, 2021, 104, .	4.7	16
42	Detecting stochastic gravitational waves with binary resonance. Physical Review D, 2022, 105, .	4.7	16
43	Scattering of light dark matter in atomic clocks. Physical Review D, 2019, 99, .	4.7	13
44	No chiral light bending by clumps of axion-like particles. Physics of the Dark Universe, 2020, 27, 100428.	4.9	13
45	Addendum: Refined bounds on MeV-scale thermal dark sectors from BBN and the CMB. Journal of Cosmology and Astroparticle Physics, 2021, 2021, A01.	5.4	11
46	Magnon inflation: slow roll with steep potentials. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 009-009.	5.4	9
47	Refined ultralight scalar dark matter searches with compact atom gradiometers. Physical Review D, 2022, 105, .	4.7	9
48	Testing Lorentz invariance of dark matter with satellite galaxies. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 024-024.	5.4	7
49	Hořava gravity: motivation and status. Journal of Physics: Conference Series, 2018, 952, 012002.	0.4	7
50	Searching for dark-matter waves with PPTA and QUIJOTE pulsar polarimetry. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 014.	5.4	7
51	Some Global and Local Aspects of Bigravity. International Journal of Theoretical Physics, 2007, 46, 2258-2273.	1.2	6
52	Scattering of scalar, electromagnetic, and gravitational waves from binary systems. Physical Review D, 2018, 98, .	4.7	5
53	Theoretical aspects of antimatter and gravity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170277.	3.4	1
54	New orbitals probes of ultra-light dark matter. International Journal of Modern Physics A, 2018, 33, 1845018.	1.5	0

ARTICLE IF CITATIONS

55 Viscous dark matter., 2017,,. 0