
Jeffrey N Agar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8447416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multimodal platform for assessing drug distribution and response in clinical trials. Neuro-Oncology, 2022, 24, 64-77.	0.6	4
2	massNet: integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation. Bioinformatics, 2022, 38, 2015-2021.	1.8	13
3	Spatial Distribution of Transcytosis Relevant Phospholipids in Response to Omega-3 Dietary Deprivation. ACS Chemical Biology, 2021, 16, 106-115.	1.6	3
4	Cyclic Thiosulfinates as a Novel Class of Disulfide Cleavable Cross-Linkers for Rapid Hydrogel Synthesis. Bioconjugate Chemistry, 2021, 32, 584-594.	1.8	10
5	Raf promotes dimerization of the Ras G-domain with increased allosteric connections. Proceedings of the United States of America, 2021, 118, .	3.3	39
6	Increasing Top-Down Mass Spectrometry Sequence Coverage by an Order of Magnitude through Optimized Internal Fragment Generation and Assignment. Analytical Chemistry, 2021, 93, 6355-6362.	3.2	19
7	Peak learning of mass spectrometry imaging data using artificial neural networks. Nature Communications, 2021, 12, 5544.	5.8	43
8	The Human Proteoform Project: Defining the human proteome. Science Advances, 2021, 7, eabk0734.	4.7	106
9	Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1783-1802.	1.2	67
10	An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?. Limnology and Oceanography: Methods, 2020, 18, 235-258.	1.0	109
11	Loss of angiogenin function is related to earlier ALS onset and a paradoxical increase in ALS duration. Scientific Reports, 2020, 10, 3715.	1.6	11
12	Localized Metabolomic Gradients in Patient-Derived Xenograft Models of Glioblastoma. Cancer Research, 2020, 80, 1258-1267.	0.4	67
13	A five-level classification system for proteoform identifications. Nature Methods, 2019, 16, 939-940.	9.0	55
14	Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nature Methods, 2019, 16, 587-594.	9.0	241
15	Nucleophilic substitution reactions of cyclic thiosulfinates are accelerated by hyperconjugative interactions. Chemical Science, 2019, 10, 5568-5575.	3.7	10
16	Genetically Encoded Fluorescent Proteins Enable High-Throughput Assignment of Cell Cohorts Directly from MALDI-MS Images. Analytical Chemistry, 2019, 91, 3810-3817.	3.2	3
17	Automatic 3D Nonlinear Registration of Mass Spectrometry Imaging and Magnetic Resonance Imaging Data. Analytical Chemistry, 2019, 91, 6206-6216.	3.2	45
18	Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging. Molecular Cancer Research, 2019, 17, 1155-1165.	1.5	50

JEFFREY N AGAR

#	Article	IF	CITATIONS
19	ProForma: A Standard Proteoform Notation. Journal of Proteome Research, 2018, 17, 1321-1325.	1.8	35
20	How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214.	3.9	580
21	Secretion, isotopic labeling and deglycosylation of N-acylethanolamine acid amidase for biophysical studies. Protein Expression and Purification, 2018, 145, 108-117.	0.6	2
22	In Vitro Liquid Extraction Surface Analysis Mass Spectrometry (ivLESA-MS) for Direct Metabolic Analysis of Adherent Cells in Culture. Analytical Chemistry, 2018, 90, 4987-4991.	3.2	18
23	Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nature Communications, 2018, 9, 4904.	5.8	62
24	Cyclic Thiosulfinates and Cyclic Disulfides Selectively Cross-Link Thiols While Avoiding Modification of Lone Thiols. Journal of the American Chemical Society, 2018, 140, 7377-7380.	6.6	23
25	Rapid discrimination of pediatric brain tumors by mass spectrometry imaging. Journal of Neuro-Oncology, 2018, 140, 269-279.	1.4	45
26	Parsing diseaseâ€relevant protein modifications from epiphenomena: perspective on the structural basis of SOD1â€mediated ALS. Journal of Mass Spectrometry, 2017, 52, 480-491.	0.7	20
27	Integrated Bottom-Up and Top-Down Liquid Chromatography–Mass Spectrometry for Characterization of Recombinant Human Growth Hormone Degradation Products. Analytical Chemistry, 2017, 89, 12771-12777.	3.2	6
28	Heavy Sugar and Heavy Water Create Tunable Intact Protein Mass Increases for Quantitative Mass Spectrometry in Any Feed and Organism. Analytical Chemistry, 2016, 88, 11139-11146.	3.2	11
29	The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus) Tj ETQq1	1 0.78431 1.2	.4 rgßT /Overlo
30	Artifacts to avoid while taking advantage of topâ€down mass spectrometry based detection of protein Sâ€thiolation. Proteomics, 2014, 14, 1152-1157.	1.3	20
31	QUDeX-MS: hydrogen/deuterium exchange calculation for mass spectra with resolved isotopic fine structure. BMC Bioinformatics, 2014, 15, 403.	1.2	11
32	Post-Translational Modification by Cysteine Protects Cu/Zn-Superoxide Dismutase from Oxidative Damage. Biochemistry, 2013, 52, 6137-6144.	1.2	33
33	Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging. Scientific Reports, 2013, 3, 2859.	1.6	118
34	A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics. Molecular Brain, 2013, 6, 60.	1.3	11
35	Impaired proteasome function in sporadic amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 367-371.	2.3	54
36	Recent advances in single-cell MALDI mass spectrometry imaging and potential clinical impact. Expert Review of Proteomics, 2011, 8, 591-604.	1.3	89

JEFFREY N AGAR

#	Article	IF	CITATIONS
37	Structural characterization of intact proteins is enhanced by prevalent fragmentation pathways rarely observed for peptides. Journal of the American Society for Mass Spectrometry, 2010, 21, 949-959.	1.2	35
38	Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21394-21399.	3.3	65
39	Sensitive and Specific Identification of Wild Type and Variant Proteins from 8 to 669 kDa Using Top-down Mass Spectrometry. Molecular and Cellular Proteomics, 2009, 8, 846-856.	2.5	83
40	Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival. PLoS Biology, 2008, 6, e170.	2.6	166
41	Matrix Solution Fixation:Â Histology-Compatible Tissue Preparation for MALDI Mass Spectrometry Imaging. Analytical Chemistry, 2007, 79, 7416-7423.	3.2	45
42	Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2004, 89, 1325-1335.	2.1	141