Mohammad Ashfaq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8447170/publications.pdf

Version: 2024-02-01

47 papers 1,466 citations

20 h-index 32 g-index

51 all docs

51 docs citations

51 times ranked 1372 citing authors

#	Article	IF	CITATIONS
1	Insulin delivery systems combined with microneedle technology. Advanced Drug Delivery Reviews, 2018, 127, 119-137.	13.7	197
2	Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Materials Science and Engineering C, 2016, 59, 938-947.	7.3	125
3	Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. Journal of Materials Science, 2018, 53, 7150-7164.	3.7	108
4	Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environmental Science: Nano, 2017, 4, 138-148.	4.3	88
5	Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. Materials Science and Engineering C, 2017, 77, 630-641.	7.3	77
6	Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnology, 2013, 30, 656-665.	4.4	73
7	Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochemical Engineering Journal, 2014, 90, 79-89.	3.6	71
8	<i>In vitro</i> and <i>in vivo</i> assessment of polymer microneedles for controlled transdermal drug delivery. Journal of Drug Targeting, 2018, 26, 720-729.	4.4	62
9	Temperature dependent, shape variant synthesis of photoluminescent and biocompatible carbon nanostructures from almond husk for applications in dye removal. RSC Advances, 2016, 6, 29545-29553.	3.6	56
10	Cytotoxic Evaluation of the Hierarchical Web of Carbon Micronanofibers. Industrial & Engineering Chemistry Research, 2013, 52, 4672-4682.	3.7	54
11	Controlled Delivery of Insulin Using Rapidly Separating Microneedles Fabricated from Genipinâ€Crosslinked Gelatin. Macromolecular Rapid Communications, 2018, 39, e1800075.	3.9	53
12	Synthesis of Yeast-Immobilized and Copper Nanoparticle-Dispersed Carbon Nanofiber-Based Diabetic Wound Dressing Material: Simultaneous Control of Glucose and Bacterial Infections. ACS Applied Bio Materials, 2018, 1, 246-258.	4.6	52
13	Bimetal (Fe/Zn) doped BiOI photocatalyst: An effective photodegradation of tetracycline and bacteria. Chemosphere, 2021, 280, 130803.	8.2	51
14	Strategic Doping Approach of the Fe–BiOl Microstructure: An Improved Photodegradation Efficiency of Tetracycline. ACS Omega, 2021, 6, 1575-1583.	3.5	37
15	Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Delivery and Translational Research, 2021, 11, 788-816.	5.8	32
16	Three-dimensional (3D) polymerâ€"metalâ€"carbon framework for efficient removal of chemical and biological contaminants. Scientific Reports, 2021, 11, 7708.	3.3	32
17	Development of a BDDE-crosslinked hyaluronic acid based microneedles patch as a dermal filler for anti-ageing treatment. Journal of Industrial and Engineering Chemistry, 2018, 65, 363-369.	5. 8	29
18	Novel polymeric composite grafted with metal nanoparticle-dispersed CNFs as a chemiresistive non-destructive fruit sensor material. Materials Chemistry and Physics, 2018, 217, 216-227.	4.0	28

#	Article	IF	Citations
19	Self-implanted tiny needles as alternative to traditional parenteral administrations for controlled transdermal drug delivery. International Journal of Pharmaceutics, 2019, 556, 338-348.	5.2	27
20	Carbon-Based Nanostructured Materials for Energy and Environmental Remediation Applications. Nanotechnology in the Life Sciences, 2018, , 369-392.	0.6	23
21	A novel bimetallic (Fe/Bi)-povidone-iodine micro-flowers composite for photocatalytic and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 2021, 219, 112204.	3.8	22
22	Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery. Drug Delivery and Translational Research, 2018, 8, 1034-1042.	5.8	20
23	Synthesis of Cu-doped 2D-WS ₂ nanosheet-based nano-antibiotic materials for inhibiting <i>E. Coli</i> and <i>S. aureus</i> bacterial strains. New Journal of Chemistry, 2022, 46, 5581-5587.	2.8	17
24	A Zn-doped BiOI microsponge-based photocatalyst material for complete photodegradation of environmental contaminants. New Journal of Chemistry, 2021, 45, 18412-18420.	2.8	15
25	Impact of Nanomaterials in Plant Systems. Nanotechnology in the Life Sciences, 2019, , 117-140.	0.6	13
26	Two-dimensional (2D) hybrid nanomaterials for diagnosis and treatment of cancer. Journal of Drug Delivery Science and Technology, 2022, 70, 103268.	3.0	11
27	A facile synthesis of CuBi2O4 hierarchical dumbbell-shaped nanorod cluster: a promising photocatalyst for the degradation of caffeic acid. Environmental Science and Pollution Research, 2022, 29, 53873-53883.	5.3	10
28	Synthesis of reduced graphene oxide incorporated bimetallic (Cu/Bi) nanorods based photocatalyst materials for the degradation of gallic acid and bacteria. Journal of Industrial and Engineering Chemistry, 2022, 110, 447-455.	5.8	9
29	Chitosan/calcium phosphate-nanoflakes-based biomaterial: a potential hemostatic wound dressing material. Polymer Bulletin, 2023, 80, 5071-5086.	3.3	9
30	Multifunctional copper polymer-based nanocomposite for environmental and agricultural applications., 2020,, 189-211.		8
31	Polymer/metal/carbon-based hybrid materials for the detection of heavy metal ions., 2020,, 335-353.		8
32	Impact of Nanomaterials on the Microbial System. Nanotechnology in the Life Sciences, 2019, , 141-158.	0.6	7
33	Polymeric Nanocomposite-Based Agriculture Delivery System: Emerging Technology for Agriculture. , 0, , .		6
34	Fabrication of CdS/PbS and CdS:Al/PbS solar cells: Optimization of the Al content in CdS and the solution pH during PbS deposition. Materials Science in Semiconductor Processing, 2021, 131, 105839.	4.0	5
35	2D Materials for Environment, Energy, and Biomedical Applications. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 977-984.	0.2	5
36	Nanocarriers: An Emerging Tool for Micronutrient Delivery in Plants. , 2020, , 373-387.		4

#	Article	IF	CITATIONS
37	Carbon Nanostructure-Based Materials: A Novel Tool for Detection of Alzheimer's Disease. , 2019, , 71-89.		3
38	Nanotechnology-based biofortification: a plant–soil interaction modulator/enhancer. , 2021, , 83-105.		2
39	Nano metal-carbon–based materials. , 2022, , 341-354.		2
40	Metal-organic framework as an emerging material. , 2022, , 323-339.		2
41	Copper-based metal-organic framework for environmental applications. , 2022, , 701-717.		2
42	Nanoadsorbents for wastewater remediation. , 2021, , 273-290.		1
43	Nanostructured materials based on copper/carbon as a plant growth stimulant. , 2022, , 367-391.		1
44	Carbon nanostructure-based sensor. , 2022, , 287-300.		1
45	Polymeric Composites: A Promising Tool for Enhancing Photosyntheticy Efficiency of Crops. , 2022, , 341-357.		1
46	Macromol. Rapid Commun. 20/2018. Macromolecular Rapid Communications, 2018, 39, 1870048.	3.9	0
47	Vegetables waste for biosynthesis of various nanoparticles. , 2022, , 281-298.		O