Cato T Laurencin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/844701/publications.pdf Version: 2024-02-01

210	22 (72	8755	5539
310	29,672	75	163
papers	citations	h-index	g-index
324	324	324	28164
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fentanyl, Heroin, and Cocaine Overdose Fatalities are Shifting to the Black Community: An Analysis of the State of Connecticut. Journal of Racial and Ethnic Health Disparities, 2022, 9, 722-730.	3.2	14
2	Regenerative Engineering Animal Models for Knee Osteoarthritis. Regenerative Engineering and Translational Medicine, 2022, 8, 284-297.	2.9	7
3	Stromal Vascular Fraction for Osteoarthritis of the Knee Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2022, 8, 210-224.	2.9	14
4	Changes in COVID-19-Associated Deaths During a Year Among Blacks and Hispanics Compared to Whites in the State of Connecticut. Journal of Racial and Ethnic Health Disparities, 2022, 9, 2049-2055.	3.2	6
5	Regenerative Engineering Approaches to Scar-Free Skin Regeneration. Regenerative Engineering and Translational Medicine, 2022, 8, 225-247.	2.9	12
6	Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,	7.1	39
7	The synthetic artificial stem cell (SASC): Shifting the paradigm of cell therapy in regenerative engineering. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
8	Advanced graphene ceramics and their future in bone regenerative engineering. International Journal of Applied Ceramic Technology, 2022, 19, 893-905.	2.1	5
9	Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Science Translational Medicine, 2022, 14, eabi7282.	12.4	88
10	Pegylated insulinâ€like growth factorâ€1 biotherapeutic delivery promotes rotator cuff regeneration in a rat model. Journal of Biomedical Materials Research - Part A, 2022, 110, 1356-1371.	4.0	8
11	Biodegradable polyphosphazenes for regenerative engineering. Journal of Materials Research, 2022, 37, 1417-1428.	2.6	11
12	Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Scientific Reports, 2022, 12, 6960.	3.3	9
13	The Role of Nanomaterials and Biological Agents on Rotator Cuff Regeneration. Regenerative Engineering and Translational Medicine, 2021, 7, 440-449.	2.9	10
14	Ligament Regenerative Engineering: Braiding Scalable and Tunable Bioengineered Ligaments Using a Bench-Top Braiding Machine. Regenerative Engineering and Translational Medicine, 2021, 7, 524-532.	2.9	24
15	Enhancing the Surface Properties of a Bioengineered Anterior Cruciate Ligament Matrix for Use with Point-of-Care Stem Cell Therapy. Engineering, 2021, 7, 153-161.	6.7	11
16	Minimally Invasive Cellular Therapies for Osteoarthritis Treatment. Regenerative Engineering and Translational Medicine, 2021, 7, 76-90.	2.9	13
17	The Treatment of Muscle Atrophy After Rotator Cuff Tears Using Electroconductive Nanofibrous Matrices. Regenerative Engineering and Translational Medicine, 2021, 7, 1-9.	2.9	12
18	COVID Highlights Another Crisis: Lack of Black Physicians and Scientists. Med, 2021, 2, 2-3.	4.4	4

#	Article	IF	CITATIONS
19	Grapheneâ€Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials, 2021, 10, e2001414.	7.6	50
20	Addressing Justified Vaccine Hesitancy in the Black Community. Journal of Racial and Ethnic Health Disparities, 2021, 8, 543-546.	3.2	54
21	Control of mesenchymal cell fate via application of FGF-8b in vitro. Stem Cell Research, 2021, 51, 102155.	0.7	9
22	Excess Deaths Among Blacks and Latinx Compared to Whites During Covid-19. Journal of Racial and Ethnic Health Disparities, 2021, 8, 783-789.	3.2	15
23	In Vivo Evaluation of the Regenerative Capability of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic- <i>co</i> -glycolic acid) Blends: A Rabbit Critical-Sized Bone Defect Model. ACS Biomaterials Science and Engineering, 2021, 7, 1564-1572.	5.2	9
24	Regenerative engineering: a review of recent advances and future directions. Regenerative Medicine, 2021, 16, 495-512.	1.7	13
25	Kinetic degradation and biocompatibility evaluation of <scp>polycaprolactoneâ€based</scp> biologics delivery matrices for regenerative engineering of the rotator cuff. Journal of Biomedical Materials Research - Part A, 2021, 109, 2137-2153.	4.0	9
26	The COVID-19 Vaccine and the Black Community: Addressing the Justified Questions. Journal of Racial and Ethnic Health Disparities, 2021, 8, 809-820.	3.2	4
27	The Mechanism of Metallosis After Total Hip Arthroplasty. Regenerative Engineering and Translational Medicine, 2021, 7, 247-261.	2.9	27
28	Enhancing the Surface Properties of a Bioengineered Anterior Cruciate Ligament Matrix for Use with Point-of-Care Stem Cell Therapy. Engineering, 2021, 7, 153-161.	6.7	4
29	Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020, 226, 119536.	11.4	631
30	Evaluation of a bioengineered ACL matrix's osteointegration with BMP-2 supplementation. PLoS ONE, 2020, 15, e0227181.	2.5	14
31	Regenerative engineered vascularized bone mediated by calcium peroxide. Journal of Biomedical Materials Research - Part A, 2020, 108, 1045-1057.	4.0	23
32	A Regenerative Polymer Blend Composed of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic- <i>co</i> -glycolic acid). ACS Applied Polymer Materials, 2020, 2, 1169-1179.	4.4	17
33	Bioinspired Scaffold Designs for Regenerating Musculoskeletal Tissue Interfaces. Regenerative Engineering and Translational Medicine, 2020, 6, 451-483.	2.9	38
34	Biomimetic Electroconductive Nanofibrous Matrices for Skeletal Muscle Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2020, 6, 228-237.	2.9	37
35	Just in TIME: Trauma-Informed Medical Education. Journal of Racial and Ethnic Health Disparities, 2020, 7, 1046-1052.	3.2	24
36	Robust phenotypic maintenance of limb cells during heterogeneous culture in a physiologically relevant polymeric-based constructed graft system. Scientific Reports, 2020, 10, 11739.	3.3	5

#	Article	IF	CITATIONS
37	A Pandemic on a Pandemic: Racism and COVID-19 in Blacks. Cell Systems, 2020, 11, 9-10.	6.2	96
38	Nanofiber Technology for Regenerative Engineering. ACS Nano, 2020, 14, 9347-9363.	14.6	68
39	Graphene for regenerative engineering. International Journal of Ceramic Engineering & Science, 2020, 2, 140-143.	1.2	10
40	Bone Tissue Engineering. , 2020, , 1373-1388.		8
41	Biomedical applications of polyphosphazenes. Medical Devices & Sensors, 2020, 3, e10113.	2.7	9
42	National Academy of Engineering 2019 Simon Ramo Founders Award Remarks. Annals of Biomedical Engineering, 2020, 48, 2279-2280.	2.5	0
43	<scp>Thiopheneâ€based</scp> polyphosphazenes with tunable optoelectronic properties. Journal of Polymer Science, 2020, 58, 3294-3310.	3.8	4
44	Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28655-28666.	7.1	28
45	Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds. Scientific Reports, 2020, 10, 22210.	3.3	59
46	Black Lives Matter in Science Engineering and Medicine. Journal of Racial and Ethnic Health Disparities, 2020, 7, 1021-1034.	3.2	3
47	Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1î² activated chondrocytes. Scientific Reports, 2020, 10, 18751.	3.3	24
48	WeÂAre the First toÂApplaud YouÂRegarding Your Efforts inÂCOVID-19:ÂA MessageÂfrom the African Diaspora to Our Brothers and Sisters of Africa. Journal of Racial and Ethnic Health Disparities, 2020, 7, 587-589.	3.2	0
49	Matrix-Based Bone Regenerative Engineering. , 2020, , 135-148.		2
50	Unconscious Bias, Racism, and Trauma-Informed Policing: an Address and Message to the Connecticut Racial Profiling Prohibition Project Advisory Board. Journal of Racial and Ethnic Health Disparities, 2020, 7, 590-591.	3.2	2
51	Health Café Series: a Potential Platform to Reduce Health Disparities. Journal of Racial and Ethnic Health Disparities, 2020, 7, 592-594.	3.2	2
52	Spatial alignment of 3D printed scaffolds modulates genotypic expression in pre-osteoblasts. Materials Letters, 2020, 276, 128189.	2.6	7
53	Emergence of the Stem Cell Secretome in Regenerative Engineering. Trends in Biotechnology, 2020, 38, 1373-1384.	9.3	90
54	Regenerative Cell-Based Therapies: Cutting Edge, Bleeding Edge, and Off the Edge. Regenerative Engineering and Translational Medicine, 2020, 6, 78-89.	2.9	24

#	Article	IF	CITATIONS
55	Nail matrix regenerative engineering: in vitro evaluation of poly(lactide―co â€glycolide)/gelatin fibrous substrates. Journal of Biomedical Materials Research - Part A, 2020, 108, 1136-1143.	4.0	4
56	Development of Tripolymeric Triaxial Electrospun Fibrous Matrices for Dual Drug Delivery Applications. Scientific Reports, 2020, 10, 609.	3.3	57
57	Racial Profiling Is a Public Health and Health Disparities Issue. Journal of Racial and Ethnic Health Disparities, 2020, 7, 393-397.	3.2	64
58	Sources of Variability in Clinical Translation of Regenerative Engineering Products: Insights from the National Academies Forum on Regenerative Medicine. Regenerative Engineering and Translational Medicine, 2020, 6, 1-6.	2.9	16
59	The COVID-19 Pandemic: a Call to Action to Identify and Address Racial and Ethnic Disparities. Journal of Racial and Ethnic Health Disparities, 2020, 7, 398-402.	3.2	579
60	Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 030801.	1.2	28
61	Racial Profiling Is a Public Health and Health Disparities Issue. , 2020, 7, 393.		1
62	Just in TIME: Trauma-Informed Medical Education. , 2020, 7, 1046.		1
63	Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2019, 5, 128-154.	2.9	91
64	Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly (lactic-co-glycolic acid). Progress in Polymer Science, 2019, 98, 101146.	24.7	40
65	Medical Surprise Anticipation and Recognition Capability: A New Concept for Better Health Care. Journal of Racial and Ethnic Health Disparities, 2019, 6, 869-873.	3.2	5
66	Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomaterialia, 2019, 94, 64-81.	8.3	55
67	Synthesis, Physicochemical Analysis, and Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials. ACS Applied Polymer Materials, 2019, 1, 1568-1578.	4.4	24
68	Skeletal Muscle Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2019, 5, 233-251.	2.9	26
69	Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4855-4860.	7.1	59
70	Insulin immobilized PCLâ€cellulose acetate microâ€nanostructured fibrous scaffolds for tendon tissue engineering. Polymers for Advanced Technologies, 2019, 30, 1205-1215.	3.2	34
71	The context of diversity. Science, 2019, 366, 929-929.	12.6	5

72 Introduction to Regenerative Engineering. , 2019, , 624-630.

0

#	Article	IF	CITATIONS
73	Regenerative Engineering in the Field of Orthopedic Surgery. , 2019, , 201-213.		О
74	The Paracrine Effect of Adipose-Derived Stem Cells Inhibits IL-1β-induced Inflammation in Chondrogenic Cells through the Wnt/β-Catenin Signaling Pathway. Regenerative Engineering and Translational Medicine, 2018, 4, 35-41.	2.9	15
75	Biodegradable Piezoelectric Force Sensor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 909-914.	7.1	259
76	Regenerative Engineering of the Rotator Cuff of the Shoulder. ACS Biomaterials Science and Engineering, 2018, 4, 751-786.	5.2	23
77	Regenerative Engineering-The Convergence Quest. MRS Advances, 2018, 3, 1665-1670.	0.9	3
78	Growth factor delivery strategies for rotator cuff repair and regeneration. International Journal of Pharmaceutics, 2018, 544, 358-371.	5.2	65
79	Injectable nanocomposite analgesic delivery system for musculoskeletal pain management. Acta Biomaterialia, 2018, 74, 280-290.	8.3	15
80	Polyphosphazene-Based Biomaterials for Regenerative Engineering. ACS Symposium Series, 2018, , 53-75.	0.5	10
81	Nanofiber/Microsphere Hybrid Matrices In Vivo for Bone Regenerative Engineering: A Preliminary Report. Regenerative Engineering and Translational Medicine, 2018, 4, 133-141.	2.9	19
82	HIV/AIDS and the African-American Community 2018: a Decade Call to Action. Journal of Racial and Ethnic Health Disparities, 2018, 5, 449-458.	3.2	18
83	HIV/AIDS and the African-American Community 2018: a Decade Call to Action. , 2018, 5, 449.		1
84	Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2017, 3, 15-31.	2.9	52
85	Inductive biomaterials for bone regeneration. Journal of Materials Research, 2017, 32, 1047-1060.	2.6	16
86	Engagement of the medical-technology sector with society. Science Translational Medicine, 2017, 9, .	12.4	3
87	Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies. Engineering, 2017, 3, 16-27.	6.7	47
88	An American Crisis: the Lack of Black Men in Medicine. Journal of Racial and Ethnic Health Disparities, 2017, 4, 317-321.	3.2	72
89	Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discovery Today, 2017, 22, 1027-1044.	6.4	10
90	Next Generation Devices and Technologies Through Regenerative Engineering. , 2017, , 21-28.		3

Next Generation Devices and Technologies Through Regenerative Engineering. , 2017, , 21-28. 90

#	Article	IF	CITATIONS
91	Regenerative engineering and advanced materials science. MRS Bulletin, 2017, 42, 600-607.	3.5	2
92	Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. Regenerative Engineering and Translational Medicine, 2017, 3, 133-165.	2.9	30
93	Microsphere-Based Scaffolds in Regenerative Engineering. Annual Review of Biomedical Engineering, 2017, 19, 135-161.	12.3	98
94	Regenerative Engineering of the Anterior Cruciate Ligament. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 391-410.	1.0	1
95	Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS ONE, 2017, 12, e0174789.	2.5	57
96	Biomimetic electroconductive scaffolds for muscle regenerative engineering. Advanced Materials Letters, 2017, 8, 587-591.	0.6	4
97	One-day treatment of small molecule 8-bromo-cyclic AMP analogue induces cell-based VEGF production for <i>in vitro</i> angiogenesis and osteoblastic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 867-875.	2.7	26
98	Polymeric Electrospinning for Musculoskeletal Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2016, 2, 69-84.	2.9	35
99	Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced Drug Delivery Reviews, 2016, 107, 247-276.	13.7	342
100	Nanofiber technology: its transformative role in nanomedicine. Nanomedicine, 2016, 11, 1499-1501.	3.3	11
101	Nanotechnology Applications in Stem Cell Science for Regenerative Engineering. Journal of Nanoscience and Nanotechnology, 2016, 16, 8953-8965.	0.9	11
102	The past, present and future of ligament regenerative engineering. Regenerative Medicine, 2016, 11, 871-881.	1.7	30
103	Regenerative Engineering: Studies of the Rotator Cuff and other Musculoskeletal Soft Tissues. MRS Advances, 2016, 1, 1255-1263.	0.9	6
104	Short-term administration of small molecule phenamil induced a protracted osteogenic effect on osteoblast-like MC3T3-E1 cells. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 518-526.	2.7	25
105	The Quest toward limb regeneration: a regenerative engineering approach. International Journal of Energy Production and Management, 2016, 3, 123-125.	3.7	32
106	Animal models of osteoarthritis: classification, update, and measurement of outcomes. Journal of Orthopaedic Surgery and Research, 2016, 11, 19.	2.3	375
107	Regenerative Engineering: Approaches to Limb Regeneration and Other Grand Challenges. Regenerative Engineering and Translational Medicine, 2015, 1, 1-3.	2.9	41
108	The Fight for the Elimination of Racial and Ethnic Health Disparities: Acknowledging the Work and Celebrating the Life of Mr. Louis Stokes. Journal of Racial and Ethnic Health Disparities, 2015, 2, 423-424.	3.2	0

#	Article	IF	CITATIONS
109	Pain management via local anesthetics and responsive hydrogels. Therapeutic Delivery, 2015, 6, 165-176.	2.2	32
110	Regenerative Engineering of Cartilage Using Adipose-Derived Stem Cells. Regenerative Engineering and Translational Medicine, 2015, 1, 42-49.	2.9	47
111	Regenerative engineering and bionic limbs. Rare Metals, 2015, 34, 143-155.	7.1	8
112	Biomaterials for Bone Regenerative Engineering. Advanced Healthcare Materials, 2015, 4, 1268-1285.	7.6	280
113	Electrospinning of polymer nanofibers for tissue regeneration. Progress in Polymer Science, 2015, 46, 1-24.	24.7	406
114	Simple Signaling Molecules for Inductive Bone Regenerative Engineering. PLoS ONE, 2014, 9, e101627.	2.5	41
115	Musculoskeletal Regenerative Engineering: Biomaterials, Structures, and Small Molecules. Advances in Biomaterials, 2014, 2014, 1-12.	0.2	5
116	Polyphosphazenes. , 2014, , 193-206.		5
117	Nanofiber-microsphere (nano-micro) matrices for bone regenerative engineering: a convergence approach toward matrix design. International Journal of Energy Production and Management, 2014, 1, 3-9.	3.7	17
118	Facile Fabrication of Polyanhydride/Anesthetic Nanoparticles with Tunable Release Kinetics. Advanced Healthcare Materials, 2014, 3, 843-847.	7.6	10
119	Nanofiber-permeated, hybrid polymer/ceramic scaffolds for guided cell behavior. Materials Research Society Symposia Proceedings, 2014, 1687, 24.	0.1	2
120	Composites and Structures for Regenerative Engineering. Materials Research Society Symposia Proceedings, 2014, 1621, 3-15.	0.1	3
121	The Evolution and Application of Regenerative Engineering. Materials Research Society Symposia Proceedings, 2014, 1687, 13.	0.1	1
122	Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 728-736.	2.7	37
123	Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discovery Today, 2014, 19, 794-800.	6.4	128
124	Micro- and nanofabrication of chitosan structures for regenerative engineering. Acta Biomaterialia, 2014, 10, 1632-1645.	8.3	102
125	Polysaccharide biomaterials for drug delivery and regenerative engineering. Polymers for Advanced Technologies, 2014, 25, 448-460.	3.2	236
126	Racial and Ethnic Health Disparities: A Way Forward. Journal of Racial and Ethnic Health Disparities, 2014, 1, 1-1.	3.2	3

#	Article	IF	CITATIONS
127	Diversity 5.0: A Way Forward. Journal of Racial and Ethnic Health Disparities, 2014, 1, 67-68.	3.2	3
128	Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, <i>in vitro</i> and <i>in vivo</i> evaluation. Biomedical Materials (Bristol), 2014, 9, 035001.	3.3	78
129	Small-molecule based musculoskeletal regenerative engineering. Trends in Biotechnology, 2014, 32, 74-81.	9.3	111
130	Regulation of bone regeneration with approved small molecule compounds. Advances in Regenerative Biology, 2014, 1, 25276.	0.2	11
131	Electrospun Polymeric Nanofiber Scaffolds for Tissue Regeneration. , 2014, , 229-254.		0
132	BIOINSPIRED MATERIALS FOR BONE REGENERATIVE ENGINEERING. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 947-967.	0.1	0
133	INNOVATIVE REGENERATIVE ENGINEERING TECHNOLOGIES FOR SOFT TISSUE REGENERATION. Technology and Innovation, 2014, 16, 195-214.	0.2	2
134	Nano-ceramic Composite Scaffolds for Bioreactor-based Bone Engineering. Clinical Orthopaedics and Related Research, 2013, 471, 2422-2433.	1.5	28
135	A chitosan thermogel for delivery of ropivacaine in regional musculoskeletal anesthesia. Biomaterials, 2013, 34, 2539-2546.	11.4	62
136	Cellulose and Collagen Derived Micro-Nano Structured Scaffolds for Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2013, 9, 719-731.	1.1	96
137	Editorial (Hot Topic:Bone Morphogenetic Proteins for Bone Regeneration and Their Alternatives). Current Pharmaceutical Design, 2013, 19, 3353-3353.	1.9	3
138	Nanostructured Composites for Bone Repair. Journal of Biomaterials and Tissue Engineering, 2013, 3, 426-439.	0.1	8
139	Polyphosphazenes as Biomaterials. , 2013, , 83-134.		2
140	Design and Optimization of Polyphosphazene Functionalized Fiber Matrices for Soft Tissue Regeneration. Journal of Biomedical Nanotechnology, 2012, 8, 107-124.	1.1	51
141	Poly(lactide-co-glycolide)-Hydroxyapatite Composites: The Development of Osteoinductive Scaffolds for Bone Regenerative Engineering. Materials Research Society Symposia Proceedings, 2012, 1417, 8.	0.1	3
142	Regenerative Engineering. Science Translational Medicine, 2012, 4, 160ed9.	12.4	107
143	Bone Tissue Engineering: Recent Advances and Challenges. Critical Reviews in Biomedical Engineering, 2012, 40, 363-408.	0.9	1,758
144	Nanostructured Polymeric Scaffolds for Orthopaedic Regenerative Engineering. IEEE Transactions on Nanobioscience, 2012, 11, 3-14.	3.3	84

#	Article	IF	CITATIONS
145	Injectable thermogelling chitosan for the local delivery of bone morphogenetic protein. Journal of Materials Science: Materials in Medicine, 2012, 23, 2141-2149.	3.6	17
146	Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: <i>in vitro</i> evaluation with human mesenchymal stem cells. Biomedical Materials (Bristol), 2012, 7, 045016.	3.3	57
147	VEGFâ€incorporated biomimetic poly(lactideâ€ <i>co</i> â€glycolide) sintered microsphere scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2187-2196.	3.4	40
148	Studies of bone morphogenetic protein-based surgical repair. Advanced Drug Delivery Reviews, 2012, 64, 1277-1291.	13.7	218
149	Optimally Porous and Biomechanically Compatible Scaffolds for Large-Area Bone Regeneration. Tissue Engineering - Part A, 2012, 18, 1376-1388.	3.1	108
150	Vascularization of Biomaterials for Bone Tissue Engineering: Current Approaches and Major Challenges. Current Angiogenesis, 2012, 1, 180-191.	0.1	15
151	The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 40-48.	2.7	52
152	The role of small molecules in musculoskeletal regeneration. Regenerative Medicine, 2012, 7, 535-549.	1.7	89
153	Differential analysis of peripheral blood―and bone marrowâ€derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. Journal of Orthopaedic Research, 2012, 30, 1507-1515.	2.3	73
154	Polyphosphazenes Containing Vitamin Substituents: Synthesis, Characterization, and Hydrolytic Sensitivity. Macromolecules, 2011, 44, 1355-1364.	4.8	48
155	Nanostructured Scaffolds for Bone Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 169-192.	1.0	6
156	Nanocomposites and bone regeneration. Frontiers of Materials Science, 2011, 5, 342-357.	2.2	56
157	Biomedical applications of biodegradable polymers. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 832-864.	2.1	1,718
158	Activation of cyclic amp/protein kinase: A signaling pathway enhances osteoblast cell adhesion on biomaterials for regenerative engineering. Journal of Orthopaedic Research, 2011, 29, 602-608.	2.3	19
159	Biomimetic Structures: Biological Implications of Dipeptideâ€Substituted Polyphosphazene–Polyester Blend Nanofiber Matrices for Loadâ€Bearing Bone Regeneration. Advanced Functional Materials, 2011, 21, 2641-2651.	14.9	129
160	2010 Panel on the Biomaterials Grand Challenges. Journal of Biomedical Materials Research - Part A, 2011, 96A, 275-287.	4.0	37
161	Improved bioâ€implant using ultrafast laser induced selfâ€assembled nanotexture in titanium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 299-305.	3.4	33
162	Evaluation of a hydrogel–fiber composite for ACL tissue engineering. Journal of Biomechanics, 2011, 44, 694-699.	2.1	67

#	Article	IF	CITATIONS
163	Electrospun Nanofibrous Scaffolds for Engineering Soft Connective Tissues. Methods in Molecular Biology, 2011, 726, 243-258.	0.9	76
164	Current Patents on Osteoinductive Molecules for Bone Tissue Engineering. Recent Patents on Biomedical Engineering, 2011, 4, 153-167.	0.5	20
165	Novel Polymer-Ceramics for Bone Repair and Regeneration. Recent Patents on Biomedical Engineering, 2011, 4, 168-184.	0.5	19
166	Spiralâ€structured, nanofibrous, 3D scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 753-762.	4.0	65
167	Functionalization of chitosan/poly(lactic acidâ€glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1193-1208.	4.0	31
168	BIOMIMETIC MATRICES FOR INTEGRIN-MEDIATED CELL ADHESION. , 2010, , 247-284.		3
169	Biomimetic, bioactive etheric polyphosphazeneâ€poly(lactideâ€∢i>coâ€glycolide) blends for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 92A, 114-125.	4.0	46
170	Tissueâ€engineered matrices as functional delivery systems: Adsorption and release of bioactive proteins from degradable composite scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 94A, 568-575.	4.0	10
171	Composite scaffolds: Bridging nanofiber and microsphere architectures to improve bioactivity of mechanically competent constructs. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1150-1158.	4.0	35
172	In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptideâ€Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering. Advanced Functional Materials, 2010, 20, 2794-2806.	14.9	55
173	Porous Structures: In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering (Adv. Funct. Mater. 17/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	14.9	27
174	Hydrogen bonding in blends of polyesters with dipeptide ontaining polyphosphazenes. Journal of Applied Polymer Science, 2010, 115, 431-437.	2.6	11
175	Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends. Biomaterials, 2010, 31, 8507-8515.	11.4	38
176	Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects. Acta Biomaterialia, 2010, 6, 1931-1937.	8.3	92
177	Chitosan–poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomaterialia, 2010, 6, 3457-3470.	8.3	141
178	Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials, 2010, 31, 4898-4908.	11.4	91
179	Novel Nanostructured Scaffolds as Therapeutic Replacement Options for Rotator Cuff Disease. Journal of Bone and Joint Surgery - Series A, 2010, 92, 170-179.	3.0	33
180	The Indications and Use of Bone Morphogenetic Proteins in Foot, Ankle, and Tibia Surgery. Foot and Ankle Clinics, 2010, 15, 543-551.	1.3	25

 Hydrolysable polylactide–polyphosphazene block copolymers for biomedical applications: synthesis, characterization, and composites with poly(lactic-co-glycolic acid). Polymer Chemistry, 2010, 1, 1459. 	.9	20
		28
182 Iodine-containing radio-opaque polyphosphazenes. Polymer Chemistry, 2010, 1, 1467. 3.9	.9	22
183 Novel matrix based anterior cruciate ligament (ACL) regeneration. Soft Matter, 2010, 6, 5016. 2.7	.7	32
 Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter, 2010, 6, 3119. 	.7	123
185The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part185B: Reviews, 2009, 15, 477-484.	.8	87
 Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2009, 5, 69-75. 	1	51
 The Implications of Polymer Selection in Regenerative Medicine: A Comparison of Amorphous and Semiâ€Crystalline Polymer for Tissue Regeneration. Advanced Functional Materials, 2009, 19, 1351-1359. 	4.9	27
Fabrication, characterization, and <i>in vitro</i> evaluation of poly(lactic acid glycolic) Tj ETQq0 0 0 rgBT /Overlock 10 4.0 rotating bioreactors. Journal of Biomedical Materials Research - Part A, 2009, 91A, 679-691.		467 Td (ac 99
189 The influence of side group modification in polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA. Biomaterials, 2009, 30, 3035-3041. 11.	1.4	53
 Nanotechnology and orthopedics: a personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 6-10. 	.1	53
Curcuminâ€loaded poly(εâ€caprolactone) nanofibres: Diabetic wound dressing with antiâ€oxidant and antiâ€inflammatory properties. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 1.9 1149-1156.	.9	364
 Polyphosphazenes That Contain Dipeptide Side Groups: Synthesis, Characterization, and Sensitivity to Hydrolysis. Macromolecules, 2009, 42, 636-639. 	.8	38
Tissue Engineering of Bone: A Primer for the Practicing Hand Surgeon. Journal of Hand Surgery, 2009, 34, 164-166.	.6	5
Novel factor-loaded polyphosphazene matrices: Potential for driving angiogenesis. Journal of Microencapsulation, 2009, 26, 544-555.	.8	22
Tissue Engineering of the Anterior Cruciate Ligament: The Viscoelastic Behavior and Cell Viability of a Novel Braid–Twist Scaffold. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1709-1728. 3.5	.5	40
196Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: Physical characterization studies. Journal of Biomedical Materials Research - Part A, 2008, 84A, 54-62.4.0	.0	57
Solvent/nonâ€solvent sintering: A novel route to create porous microsphere scaffolds for tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 3.4 396-406.	.4	80

198 Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 5

#	Article	IF	CITATIONS
199	Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials, 2008, 29, 4100-4107.	11.4	512
200	The FDA and safety—beyond the heparin crisis. Nature Biotechnology, 2008, 26, 621-623.	17.5	28
201	Mouse growth and differentiation factor-5 protein and DNA therapy potentiates intervertebral disc cell aggregation and chondrogenic gene expression. Spine Journal, 2008, 8, 287-295.	1.3	68
202	Synthesis and Characterization of Polyphosphazene- <i>block</i> -polyester and Polyphosphazene- <i>block</i> -polycarbonate Macromolecules. Macromolecules, 2008, 41, 1126-1130.	4.8	32
203	Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering. Biomacromolecules, 2008, 9, 1818-1825.	5.4	184
204	Tissue Engineering of Bone: Material and Matrix Considerations. Journal of Bone and Joint Surgery - Series A, 2008, 90, 36-42.	3.0	417
205	Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11099-11104.	7.1	178
206	Nanofibers and Nanoparticles for Orthopaedic Surgery Applications. Journal of Bone and Joint Surgery - Series A, 2008, 90, 128-131.	3.0	77
207	HIV/AIDS and the African-American Community: A State of Emergency. Journal of the National Medical Association, 2008, 100, 35-43.	0.8	51
208	Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors, 2008, 26, 132-142.	1.7	83
209	Fracture Repair: Challenges and Opportunities. Journal of Bone and Joint Surgery - Series A, 2008, 90, 1-2.	3.0	21
210	Biologically Active Chitosan Systems for Tissue Engineering and Regenerative Medicine. Current Topics in Medicinal Chemistry, 2008, 8, 354-364.	2.1	113
211	Recent Patents on Electrospun Biomedical Nanostructures: An Overview. Recent Patents on Biomedical Engineering, 2008, 1, 68-78.	0.5	66
212	Electrospun Polymeric Nanofiber Scaffolds for Tissue Regeneration. , 2008, , 199-219.		1
213	Xenotransplantation in Orthopaedic Surgery. Journal of the American Academy of Orthopaedic Surgeons, The, 2008, 16, 4-8.	2.5	65
214	Biomimetic tissue-engineered anterior cruciate ligament replacement. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3049-3054.	7.1	170
215	Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1141-1152.	3.5	17
216	Miscibility of Bioerodible Polyphosphazene/Poly(lactide-co-glycolide) Blends. Biomacromolecules, 2007, 8, 1306-1312.	5.4	55

#	Article	IF	CITATIONS
217	Development of Injectable Thermogelling Chitosan–Inorganic Phosphate Solutions for Biomedical Applications. Biomacromolecules, 2007, 8, 3779-3785.	5.4	108
218	Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. Biotechnology and Bioengineering, 2007, 98, 1094-1102.	3.3	30
219	A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: Precision electrospraying. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 91-103.	3.4	46
220	Nanobiomaterial applications in orthopedics. Journal of Orthopaedic Research, 2007, 25, 11-22.	2.3	316
221	Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering. Acta Biomaterialia, 2007, 3, 503-514.	8.3	96
222	Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007, 32, 762-798.	24.7	3,688
223	Structural and nanoindentation studies of stem cell-based tissue-engineered bone. Journal of Biomechanics, 2007, 40, 399-411.	2.1	62
224	Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. Journal of Biomechanics, 2007, 40, 2029-2036.	2.1	187
225	The formation of an apatite coating on carboxylated polyphosphazenes via a biomimetic process. Materials Letters, 2007, 61, 3692-3695.	2.6	18
226	In situ synthesized ceramic–polymer composites for bone tissue engineering: bioactivity and degradation studies. Journal of Materials Science, 2007, 42, 4183-4190.	3.7	24
227	In Vitro and In Vivo Characterization of Biodegradable Poly(organophosphazenes) for Biomedical Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 16, 365-385.	3.7	70
228	The Biocompatibility of Biodegradable Glycine Containing Polyphosphazenes: A Comparative study in Bone. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 16, 387-396.	3.7	29
229	Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery. , 2006, 102, 47-90.		285
230	Bone graft substitutes. Expert Review of Medical Devices, 2006, 3, 49-57.	2.8	524
231	Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Spine Journal, 2006, 6, 615-623.	1.3	50
232	Effect of Side Group Chemistry on the Properties of Biodegradablel-Alanine Cosubstituted Polyphosphazenes. Biomacromolecules, 2006, 7, 914-918.	5.4	149
233	Proximal Humerus Fracture Rehabilitation. Clinical Orthopaedics and Related Research, 2006, 442, 131-138.	1.5	126
234	Electrospinning of Poly[bis(ethyl alanato) phosphazene] Nanofibers. Journal of Biomedical Nanotechnology, 2006, 2, 36-45.	1.1	31

#	Article	IF	CITATIONS
235	In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 4894-4903.	11.4	260
236	Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials, 2006, 27, 2747-2754.	11.4	99
237	Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials, 2006, 27, 2426-2433.	11.4	95
238	Human osteoblast cells: Isolation, characterization, and growth on polymers for musculoskeletal tissue engineering. Journal of Biomedical Materials Research - Part A, 2006, 76A, 439-449.	4.0	37
239	Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes. Journal of Biomedical Materials Research - Part A, 2006, 76A, 206-213.	4.0	48
240	In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. Journal of Biomedical Materials Research - Part A, 2006, 77A, 679-687.	4.0	72
241	Polymeric Nanofibers as Novel Carriers for the Delivery of Therapeutic Molecules. Journal of Nanoscience and Nanotechnology, 2006, 6, 2591-2607.	0.9	101
242	In vitro and in vivo evaluation of a novel polymer-ceramic composite scaffold for bone tissue engineering. , 2006, 2006, 529-30.		15
243	Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials, 2005, 26, 4805-4816.	11.4	338
244	Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials, 2005, 26, 1523-1532.	11.4	428
245	Ligament tissue engineering: An evolutionary materials science approach. Biomaterials, 2005, 26, 7530-7536.	11.4	278
246	The Role of Type I Collagen Molecular Structure in Tendon Elastic Energy Storage. Materials Research Society Symposia Proceedings, 2005, 874, 1.	0.1	4
247	Biodegradable Poly[bis(ethyl alanato)phosphazene] - Poly(lactide-co-glycolide) Blends: Miscibility and Osteocompatibility Evaluations. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	5
248	Development of Biodegradable Polyphosphazene- Nanohydroxyapatite Composite Nanofibers Via Electrospinning. Materials Research Society Symposia Proceedings, 2004, 845, 103.	0.1	3
249	A Novel Polymer-Synthesized Ceramic Composite Based System for Bone Repair: Osteoblast Growth on Scaffolds with Varied Calcium Phosphate Content. Materials Research Society Symposia Proceedings, 2004, 845, 77.	0.1	2
250	Development of Novel Biodegradable Amino Acid Ester Based Polyphosphazene– Hydroxyapatite Composites for Bone Tissue Engineering. Materials Research Society Symposia Proceedings, 2004, 845, 151.	0.1	3
251	Bioreactor Based Bone Tissue Engineering: Influence of Wall Collision on Osteoblast Cultured on Polymeric Microcarrier Scaffolds in Rotating Bioreactors. Materials Research Society Symposia Proceedings, 2004, 845, 193.	0.1	0
252	Fabrication of Novel Porous Chitosan Matrices as Scaffolds for Bone Tissue Engineering. Materials Research Society Symposia Proceedings, 2004, 845, 327.	0.1	3

#	Article	IF	CITATIONS
253	Novel polymer-synthesized ceramic composite-based system for bone repair: Anin vitro evaluation. Journal of Biomedical Materials Research Part B, 2004, 69A, 728-737.	3.1	127
254	Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research Part B, 2004, 70B, 286-296.	3.1	587
255	Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11203-11208.	7.1	270
256	Development of novel tissue engineering scaffolds via electrospinning. Expert Opinion on Biological Therapy, 2004, 4, 659-668.	3.1	175
257	Fabrication and Optimization of Methylphenoxy Substituted Polyphosphazene Nanofibers for Biomedical Applications. Biomacromolecules, 2004, 5, 2212-2220.	5.4	162
258	Molecular Regulation of Osteoblasts for Tissue Engineered Bone Repair. Clinical Orthopaedics and Related Research, 2004, 427, 220-225.	1.5	14
259	Repair and restore with tissue engineering - An overview of this growing field from the guest editors. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 16-17.	0.8	11
260	Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cellsin vitro. Journal of Biomedical Materials Research Part B, 2003, 64A, 465-474.	3.1	317
261	Cryopreservation of tissue engineered constructs for bone. Journal of Orthopaedic Research, 2003, 21, 1005-1010.	2.3	31
262	In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer–bone morphogenetic protein matrices. Biochemical and Biophysical Research Communications, 2003, 305, 882-889.	2.1	52
263	Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research Part B, 2002, 60, 613-621.	3.1	2,134
264	The sintered microsphere matrix for bone tissue engineering:In vitro osteoconductivity studies. Journal of Biomedical Materials Research Part B, 2002, 61, 421-429.	3.1	136
265	Tissue engineered microsphere-based matrices for bone repair:. Biomaterials, 2002, 23, 551-559.	11.4	255
266	Degradable polyphosphazene/poly(α-hydroxyester) blends: degradation studies. Biomaterials, 2002, 23, 1667-1672.	11.4	113
267	Integrin expression by human osteoblasts cultured on degradable polymeric materials applicable for tissue engineered bone. Journal of Orthopaedic Research, 2002, 20, 20-28.	2.3	61
268	In Vitro Cellular Adhesion and Proliferation on Novel Bioresorbable Matrices for Use in Bone Regeneration Applications. ACS Symposium Series, 2001, , 294-310.	0.5	2
269	A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. Journal of Biomedical Materials Research Part B, 2001, 58, 295-301.	3.1	148
270	Bone-Graft Substitutes: Facts, Fictions, and Applications. Journal of Bone and Joint Surgery - Series A, 2001, 83, 98-103.	3.0	556

#	Article	IF	CITATIONS
271	Proliferation, morphology, and protein expression by osteoblasts cultured on poly(anhydride-co-imides). Journal of Biomedical Materials Research Part B, 1999, 48, 322-327.	3.1	46
272	Preliminaryin vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. Journal of Biomedical Materials Research Part B, 1998, 43, 374-379.	3.1	73
273	Poly(anhydride-co-imides): in vivo biocompatibility in a rat model. Biomaterials, 1998, 19, 941-951.	11.4	70
274	In Vitro Release of Colchicine Using Poly(phosphazenes): The Development of Delivery Systems for Musculoskeletal Use. Pharmaceutical Development and Technology, 1998, 3, 55-62.	2.4	28
275	Fiber Based Tissue Engineered Scaffolds for Musculoskeletal Applications: in Vitro Cellular Response. Materials Research Society Symposia Proceedings, 1998, 550, 127.	0.1	4
276	Photopolymerization of Novel Degradable Networks for Orthopedic Applications. ACS Symposium Series, 1997, , 189-202.	0.5	24
277	Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies. Biomaterials, 1997, 18, 1565-1569.	11.4	80
278	Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices. Bone, 1996, 19, S93-S99.	2.9	153
279	Controlled macromolecule release from poly(phosphazene) matrices. Journal of Controlled Release, 1996, 40, 31-39.	9.9	60
280	In vitro bone biocompatibility of poly(anhydride-co-imides) containing pyromellitylimidoalanine. Journal of Orthopaedic Research, 1996, 14, 445-454.	2.3	44
281	A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. , 1996, 30, 133-138.		181
282	Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 661-669.	3.5	162
283	Immunofluorescence and confocal laser scanning microscopy studies of osteoblast growth and phenotypic expression in three-dimensional degradable synthetic matrices. Journal of Biomedical Materials Research Part B, 1995, 29, 843-848.	3.1	43
284	Cytotoxicity testing of poly(anhydride-co-imides) for orthopedic applications. Journal of Biomedical Materials Research Part B, 1995, 29, 1233-1240.	3.1	38
285	Synthesis and Characterization of Degradable Poly(anhydride-co-imides). Macromolecules, 1995, 28, 2184-2193.	4.8	122
286	Use of polyphosphazenes for skeletal tissue regeneration. Journal of Biomedical Materials Research Part B, 1993, 27, 963-973.	3.1	167
287	Osteoblast culture on bioerodible polymers: studies of initial cell adhesion and spread. Polymers for Advanced Technologies, 1992, 3, 359-364.	3.2	34
288	The formation of propylene fumarate oligomers for use in bioerodible bone cement composites. Journal of Polymer Science Part A, 1990, 28, 973-985.	2.3	33

#	Article	IF	CITATIONS
289	Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. Journal of Biomedical Materials Research Part B, 1990, 24, 901-911.	3.1	81
290	Development of Nanostructures for Drug Delivery Applications. , 0, , 139-206.		1
291	Nanotechnology and Drug Delivery. , 0, , 93-113.		4
292	Cell Behavior Toward Nanostructured Surfaces. , 0, , 261-295.		9
293	Nanofabrication Techniques. , 0, , 1-24.		Ο
294	Cellular Behavior on Basement Membrane Inspired Topographically Patterned Synthetic Matrices. , 0, , 297-319.		2
295	Focal Adhesions: Self-Assembling Nanoscale Mechanochemical Machines that Control Cell Function. , 0, , 321-335.		0
296	Controlling Cell Behavior via DNA and RNA Transfections. , 0, , 337-356.		0
297	Multiscale Coculture Models for Orthopedic Interface Tissue Engineering. , 0, , 357-373.		4
298	Nanostructures for Tissue Engineering/Regenerative Medicine. , 0, , 375-407.		5
299	Nanostructures for Cancer Diagnostics and Therapy. , 0, , 409-437.		2
300	Nanoscale Iron Compounds Related to Neurodegenerative Disorders. , 0, , 461-490.		1
301	Application of Nanotechnology into Life Science: Benefit or Risk. , 0, , 491-501.		Ο
302	Micro/Nanomachining and Fabrication of Materials for Biomedical Applications. , 0, , 25-47.		2
303	Novel Nanostructures as Molecular Nanomotors. , 0, , 49-60.		Ο
304	Bioconjugation of Soft Nanomaterials. , 0, , 61-91.		0
305	Polymeric Nanoparticles and Nanopore Membranes for Controlled Drug and Gene Delivery. , 0, , 115-137.		5
306	Bioconjugated Nanoparticles for Ultrasensitive Detection of Molecular Biomarkers and Infectious		1

Bioconjugated Nanoparticles for Ultrasensitive Detection of Molecular Biomarkers and Infectious Agents. , 0, , 207-222. 306

#	Article	IF	CITATIONS
307	ECM Interactions with Cells from the Macro- to Nanoscale. , 0, , 223-260.		4
308	Biodegradable Polyphosphazene Scaffolds for Tissue Engineering. , 0, , 117-138.		6
309	Biodegradable Polymers: Polyphosphazenes. , 0, , 739-756.		1
310	Single-Dose Induction of Osteogenic Differentiation of Mesenchymal Stem Cells Using a Cyclic AMP Activator, Forskolin. Regenerative Engineering and Translational Medicine, 0, , .	2.9	2