
Poul Christoffersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8446780/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A fully-coupled 3D model of a large Greenlandic outlet glacier with evolving subglacial hydrology, frontal plume melting and calving. Journal of Glaciology, 2022, 68, 486-502.	1.1	12
2	Post-Processing Synchronized Bistatic Radar for Long Offset Glacier Sounding. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	7
3	Rapid basal melting of the Greenland Ice Sheet from surface meltwater drainage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
4	Cryoegg: development and field trials of a wireless subglacial probe for deep, fast-moving ice. Journal of Glaciology, 2021, 67, 627-640.	1.1	6
5	Calving of a Large Greenlandic Tidewater Glacier has Complex Links to Meltwater Plumes and Mélange. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF006051.	1.0	10
6	Inferring Ice Fabric From Birefringence Loss in Airborne Radargrams: Application to the Eastern Shear Margin of Thwaites Glacier, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF006023.	1.0	19
7	Thermodynamics of a fast-moving Greenlandic outlet glacier revealed by fiber-optic distributed temperature sensing. Science Advances, 2021, 7, .	4.7	17
8	Boreholeâ€Based Characterization of Deep Mixedâ€Mode Crevasses at a Greenlandic Outlet Glacier. AGU Advances, 2021, 2, e2020AV000291.	2.3	13
9	Glaciological Monitoring Using the Sun as a Radio Source for Echo Detection. Geophysical Research Letters, 2021, 48, e2021GL092450.	1.5	8
10	Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide ice core site. Cryosphere, 2021, 15, 4117-4133.	1.5	8
11	Controls on Water Storage and Drainage in Crevasses on the Greenland Ice Sheet. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006287.	1.0	11
12	Distributed Acoustic Sensing of Seismic Properties in a Borehole Drilled on a Fastâ€Flowing Greenlandic Outlet Glacier. Geophysical Research Letters, 2020, 47, e2020GL088148.	1.5	43
13	Coupled modelling of subglacial hydrology and calving-front melting at Store Clacier, West Greenland. Cryosphere, 2020, 14, 905-924.	1.5	22
14	Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model. Cryosphere, 2019, 13, 1681-1694.	1.5	23
15	Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya. Nature Geoscience, 2019, 12, 435-440.	5.4	69
16	Physical Conditions of Fast Glacier Flow: 3. Seasonallyâ€Evolving Ice Deformation on Store Glacier, West Greenland. Journal of Geophysical Research F: Earth Surface, 2019, 124, 245-267.	1.0	13
17	High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control. Cryosphere, 2019, 13, 955-968.	1.5	67
18	Supraglacial lake drainage at a fast-flowing Greenlandic outlet glacier. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25468-25477.	3.3	41

POUL CHRISTOFFERSEN

#	Article	IF	CITATIONS
19	Contrasting Hydrological Controls on Bed Properties During the Acceleration of Pine Island Glacier, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2019, 124, 80-96.	1.0	5
20	A Full‣tokes 3â€Ð Calving Model Applied to a Large Greenlandic Glacier. Journal of Geophysical Research F: Earth Surface, 2018, 123, 410-432.	1.0	54
21	Physical Conditions of Fast Glacier Flow: 1. Measurements From Boreholes Drilled to the Bed of Store Glacier, West Greenland. Journal of Geophysical Research F: Earth Surface, 2018, 123, 324-348.	1.0	41
22	Physical Conditions of Fast Glacier Flow: 2. Variable Extent of Anisotropic Ice and Soft Basal Sediment From Seismic Reflection Data Acquired on Store Glacier, West Greenland. Journal of Geophysical Research F: Earth Surface, 2018, 123, 349-362.	1.0	26
23	Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture. Nature Communications, 2018, 9, 1064.	5.8	47
24	Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar. Journal of Glaciology, 2018, 64, 649-660.	1.1	26
25	Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland. Geophysical Research Letters, 2018, 45, 10,474.	1.5	36
26	Linear response of east Greenland's tidewater glaciers to ocean/atmosphere warming. Proceedings of the United States of America, 2018, 115, 7907-7912.	3.3	51
27	Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. Geological Society Special Publication, 2018, 461, 197-213.	0.8	35
28	Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow. Science Advances, 2017, 3, e1603071.	4.7	39
29	Observation Bias Correction Reveals More Rapidly Draining Lakes on the Greenland Ice Sheet. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1867-1881.	1.0	15
30	Reactivation of Kamb Ice Stream tributaries triggers centuryâ€scale reorganization of Siple Coast ice flow in West Antarctica. Geophysical Research Letters, 2015, 42, 8471-8480.	1.5	24
31	UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. Cryosphere, 2015, 9, 1-11.	1.5	215
32	Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nature Geoscience, 2015, 8, 647-653.	5.4	107
33	Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland. Journal of Glaciology, 2015, 61, 137-150.	1.1	52
34	Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland. Cryosphere, 2014, 8, 2353-2365.	1.5	78
35	Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed. Nature Communications, 2014, 5, 5052.	5.8	67
36	Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere, 2014, 8, 1457-1468.	1.5	88

POUL CHRISTOFFERSEN

#	Article	IF	CITATIONS
37	Significant groundwater contribution to Antarctic ice streams hydrologic budget. Geophysical Research Letters, 2014, 41, 2003-2010.	1.5	87
38	Dynamics of the late Plio–Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill core. Global and Planetary Change, 2014, 119, 56-70.	1.6	11
39	Variable deceleration of Whillans Ice Stream, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2014, 119, 212-224.	1.0	40
40	Surface undulations of Antarctic ice streams tightly controlled by bedrock topography. Cryosphere, 2013, 7, 407-417.	1.5	25
41	Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere, 2013, 7, 119-128.	1.5	169
42	The influence of subglacial hydrology on the flow of Kamb Ice Stream, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2013, 118, 97-110.	1.0	32
43	Greenland subglacial lakes detected by radar. Geophysical Research Letters, 2013, 40, 6154-6159.	1.5	62
44	Sensitivity of basal conditions in an inverse model: Vestfonna ice cap, Nordaustlandet/Svalbard. Cryosphere, 2012, 6, 771-783.	1.5	33
45	Brief communication Greenland's shrinking ice cover: "fast times" but not that fast. Cryosphere, 2012, 6, 533-537.	1.5	39
46	Sedimentological Signature of A Deformable Bed Preserved Beneath An Ice Stream In A Late Pleistocene Glacial Sequence, Ross Sea, Antarctica. Journal of Sedimentary Research, 2012, 82, 270-282.	0.8	25
47	Hydrologic forcing of ice stream flow promotes rapid transport of sediment in basal ice. Geology, 2012, 40, 735-738.	2.0	5
48	Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland. Annals of Glaciology, 2012, 53, 249-256.	2.8	34
49	Changing Extent of Lakes and Permafrost on the North Slope of Alaska. , 2012, , .		2
50	Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. Journal of Geophysical Research, 2011, 116, .	3.3	127
51	Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology. Journal of Geophysical Research, 2011, 116, .	3.3	66
52	lce thickness and basal conditions of vestfonna ice cap, eastern svalbard. Geografiska Annaler, Series A: Physical Geography, 2011, 93, 311-322.	0.6	20
53	Spatial distribution and change in the surface iceâ€velocity field of vestfonna ice cap, nordaustlandet, svalbard, 1995–2010 using geodetic and satellite interferometry data. Geografiska Annaler, Series A: Physical Geography, 2011, 93, 323-335.	0.6	14
54	Analysis of the microbial community and geochemistry of a sediment core from Great Slave Lake, Canada. Antonie Van Leeuwenhoek, 2011, 99, 423-430.	0.7	13

#	Article	IF	CITATIONS
55	Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere, 2011, 5, 701-714.	1.5	93
56	Greenland Ice Sheet. Encyclopedia of Earth Sciences Series, 2011, , 484-489.	0.1	1
57	Subglacial lake sediments and sedimentary processes: Potential archives of ice sheet evolution, past environmental change, and the presence of life. Geophysical Monograph Series, 2011, , 83-110.	0.1	14
58	Basal ice sequences in Antarctic ice stream: Exposure of past hydrologic conditions and a principal mode of sediment transfer. Journal of Geophysical Research, 2010, 115, .	3.3	51
59	POLYNEUROPATHY IN PATIENTS WITH URAEMIA TREATED WITH DIALYSIS. Acta Neurologica Scandinavica, 2009, 46, 206-206.	1.0	2
60	Seasonal Controls on Deposition of Late Devensian Glaciolacustrine Sediments, Central Ireland. , 2009, , 149-163.		3
61	Anatomy and Facies Association of a Drumlin in Co. Down, Northern Ireland, from Seismic and Electrical Resistivity Surveys. , 2009, , 165-176.		3
62	The Newbigging Esker System, Lanarkshire, Southern Scotland: A Model for Composite Tunnel, Subaqueous Fan and Supraglacial Esker Sedimentation. , 2009, , 177-202.		1
63	Sediments and Landforms in an Upland Glaciated-Valley Landsystem: Upper Ennerdale, English Lake District. , 2009, , 235-256.		1
64	Cenozoic Climate and Sea Level History from Glacimarine Strata off the Victoria Land Coast, Cape Roberts Project, Antarctica. , 2009, , 259-287.		34
65	Glacial Stress Field Orientation Reconstructed through Micromorphology and µX-Ray Computed Tomography of Till. , 2009, , 289-294.		1
66	Sedimentology, Structural Characteristics and Morphology of a Neoglacial High-Arctic Moraine-Mound Complex: Midre Lovénbreen, Svalbard. , 2009, , 11-22.		2
67	A New Laboratory Apparatus for Investigating Clast Ploughing. , 2009, , 23-34.		1
68	A Brief Review on Modeling Sediment Erosion, Transport and Deposition by Former Large Ice Sheets. , 2009, , 53-64.		0
69	Sedimentary Signatures of the Waterloo Moraine, Ontario, Canada. , 2009, , 85-108.		13
70	Estimating Episodic Permafrost Development in Northern Germany during the Pleistocene. , 2009, , 109-119.		4
71	Large subglacial lake beneath the Laurentide Ice Sheet inferred from sedimentary sequences. Geology, 2008, 36, 563.	2.0	40
72	Reply to comment by A. W. Rempel et al. on "A quantitative framework for interpretation of basal ice facies formed by ice accretion over subglacial sediment― Journal of Geophysical Research, 2007, 112, .	3.3	3

#	Article	IF	CITATIONS
73	Exploration of Ellsworth Subglacial Lake: a concept paper on the development, organisation and execution of an experiment to explore, measure and sample the environment of a West Antarctic subglacial lake. Reviews in Environmental Science and Biotechnology, 2007, 6, 161-179.	3.9	34
74	A quantitative framework for interpretation of basal ice facies formed by ice accretion over subglacial sediment. Journal of Geophysical Research, 2006, 111, .	3.3	32
75	Formation and deformation of basal till during a glacier surge; Elisebreen, Svalbard. Geomorphology, 2006, 81, 217-234.	1.1	38
76	Is the Greenland Ice Sheet in a state of collapse?. Geology Today, 2006, 22, 98-103.	0.3	9
77	Basal processes beneath an Arctic glacier and their geomorphic imprint after a surge, Elisebreen, Svalbard. Quaternary Research, 2005, 64, 125-137.	1.0	61
78	ICELANDIC ICE MOUNTAINS: DRAFT OF A PHYSICAL, GEOGRAPHICAL, AND HISTORICAL DESCRIPTION OF ICELANDIC ICE MOUNTAINS ON THE BASIS OF A JOURNEY TO THE MOST PROMINENT OF THEM IN 1792–1794. Sveinn Pálsson. 2004. Edited by R.S. Williams Jr and O. Sigurðsson. Reykjavik: Icelandic Literary Society. xxxvi + 183 p, illustrated, hard cover. ISBN 9979-66-146-1. \$US56.00. Polar Record, 2005, 41, 368-369.	0.4	0
79	Signature of palaeoâ€iceâ€stream stagnation: till consolidation induced by basal freezeâ€on. Boreas, 2003, 32, 114-129.	1.2	52
80	Response of subglacial sediments to basal freeze-on 1. Theory and comparison to observations from beneath the West Antarctic Ice Sheet. Journal of Geophysical Research, 2003, 108, .	3.3	95
81	Thermodynamics of basal freeze-on: predicting basal and subglacial signatures of stopped ice streams and interstream ridges. Annals of Glaciology, 2003, 36, 233-243.	2.8	55
82	Signature of palaeo-ice-stream stagnation: till consolidation induced by basal freeze-on. Boreas, 2003, 32, 114-129.	1.2	12

Water flow through sediments and at the ice-sediment interface beneath Sermeq Kujalleq (Store) Tj ETQq1 1 0.784314 rgBT $\frac{1}{1.1}$ Overloc