
Xian-Zhou Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8446717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Divergent Climate Sensitivities of the Alpine Grasslands to Early Growing Season Precipitation on the Tibetan Plateau. Remote Sensing, 2022, 14, 2484.	4.0	6
2	Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet. Ecosystem Services, 2021, 47, 101231.	5.4	16
3	Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. Journal of Environmental Management, 2021, 281, 111875.	7.8	44
4	Climate Variability Rather Than Livestock Grazing Dominates Changes in Alpine Grassland Productivity Across Tibet. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	28
5	Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 2021, 7, .	10.3	28
6	Heavy Grazing Altered the Biodiversity–Productivity Relationship of Alpine Grasslands in Lhasa River Valley, Tibet. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	13
7	Declining human activity intensity on alpine grasslands of the Tibetan Plateau. Journal of Environmental Management, 2021, 296, 113198.	7.8	35
8	Restoration effects of fertilization and grazing exclusion on different degraded alpine grasslands: Evidence from a 10-year experiment. Ecological Engineering, 2021, 170, 106361.	3.6	14
9	Elevation-dependent effects of growing season length on carbon sequestration in Xizang Plateau grassland. Ecological Indicators, 2020, 110, 105880.	6.3	12
10	Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios. Global Ecology and Conservation, 2020, 21, e00848.	2.1	21
11	Vegetation Expansion on the Tibetan Plateau and Its Relationship with Climate Change. Remote Sensing, 2020, 12, 4150.	4.0	23
12	Sensitivity of terrestrial carbon cycle to changes in precipitation regimes. Ecological Indicators, 2020, 113, 106223.	6.3	21
13	Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Global Change Biology, 2020, 26, 2970-2987.	9.5	20
14	Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau. PeerJ, 2020, 8, e8513.	2.0	18
15	Plant and soil's δ15N are regulated by climate, soil nutrients, and species diversity in alpine grasslands on the northern Tibetan Plateau. Agriculture, Ecosystems and Environment, 2019, 281, 111-123.	5.3	27
16	Land Use and Land Cover Change in the Kailash Sacred Landscape of China. Sustainability, 2019, 11, 1788.	3.2	16
17	Dynamic forage-livestock balance analysis in alpine grasslands on the Northern Tibetan Plateau. Journal of Environmental Management, 2019, 238, 352-359.	7.8	42
18	Spatial–Temporal Variation of ANPP and Rain-Use Efficiency Along a Precipitation Gradient on Changtang Plateau, Tibet. Remote Sensing, 2019, 11, 325.	4.0	6

XIAN-ZHOU ZHANG

#	Article	IF	CITATIONS
19	Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. Remote Sensing, 2019, 11, 360.	4.0	33
20	High Below-Ground Productivity Allocation of Alpine Grasslands on the Northern Tibet. Plants, 2019, 8, 535.	3.5	15
21	Impacts of grazing exclusion on productivity partitioning along regional plant diversity and climatic gradients in Tibetan alpine grasslands. Journal of Environmental Management, 2019, 231, 635-645.	7.8	34
22	Patterns and dynamics of the human appropriation of net primary production and its components in Tibet. Journal of Environmental Management, 2018, 210, 280-289.	7.8	24
23	Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia. Agricultural and Forest Meteorology, 2018, 249, 163-175.	4.8	62
24	Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 249, 11-21.	4.8	117
25	Responses of ecosystem respiration to nitrogen enrichment and clipping mediated by soil acidification in an alpine meadow. Pedobiologia, 2017, 60, 1-10.	1.2	16
26	Validation of collection of 6 MODIS/Terra and MODIS/Aqua gross primary production in an alpine meadow of the Northern Tibetan Plateau. International Journal of Remote Sensing, 2017, 38, 4517-4534.	2.9	15
27	A growing season climatic index to simulate gross primary productivity and carbon budget in a Tibetan alpine meadow. Ecological Indicators, 2017, 81, 285-294.	6.3	10
28	Alpine grassland fPAR change over the Northern Tibetan Plateau from 2002 to 2011. Advances in Climate Change Research, 2017, 8, 108-116.	5.1	5
29	Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau. Ecology and Evolution, 2017, 7, 7201-7212.	1.9	58
30	Climatic and geographic factors affect ecosystem multifunctionality through biodiversity in the Tibetan alpine grasslands. Journal of Mountain Science, 2017, 14, 1604-1614.	2.0	11
31	Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. Scientific Reports, 2017, 7, 15202.	3.3	42
32	Identifying the Relative Contributions of Climate and Grazing to Both Direction and Magnitude of Alpine Grassland Productivity Dynamics from 1993 to 2011 on the Northern Tibetan Plateau. Remote Sensing, 2017, 9, 136.	4.0	22
33	Satellite-Based Inversion and Field Validation of Autotrophic and Heterotrophic Respiration in an Alpine Meadow on the Tibetan Plateau. Remote Sensing, 2017, 9, 615.	4.0	6
34	Tower-Based Validation and Improvement of MODIS Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau. Remote Sensing, 2016, 8, 592.	4.0	24
35	Grazing Exclusion to Recover Degraded Alpine Pastures Needs Scientific Assessments across the Northern Tibetan Plateau. Sustainability, 2016, 8, 1162.	3.2	35
36	Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China—A meta-analysis. Ecological Engineering, 2016, 94, 647-655.	3.6	148

XIAN-ZHOU ZHANG

#	Article	IF	CITATIONS
37	Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands. Scientific Reports, 2016, 6, 35649.	3.3	36
38	Species-area relationship within and across functional groups at alpine grasslands on the northern Tibetan Plateau, China. Journal of Mountain Science, 2016, 13, 265-275.	2.0	4
39	A modified framework for the regional assessment of climate and human impacts on net primary productivity. Ecological Indicators, 2016, 60, 184-191.	6.3	21
40	Light-intensity grazing improves alpine meadow productivity and adaption to climate change on the Tibetan Plateau. Scientific Reports, 2015, 5, 15949.	3.3	50
41	Stable Water Use Efficiency of Tibetan Alpine Meadows in Past Half Century: Evidence from Wool δ13C Values. PLoS ONE, 2015, 10, e0144752.	2.5	2
42	Lagged climatic effects on carbon fluxes over three grassland ecosystems in China. Journal of Plant Ecology, 2015, 8, 291-302.	2.3	27
43	Modeling Net Ecosystem Carbon Exchange of Alpine Grasslands with a Satellite-Driven Model. PLoS ONE, 2015, 10, e0122486.	2.5	8
44	Clipping alters the response of biomass production to experimental warming: A case study in an alpine meadow on the Tibetan Plateau, China. Journal of Mountain Science, 2015, 12, 935-942.	2.0	17
45	Spatial and climatic patterns of the relative abundance of poisonous vs. non-poisonous plants across the Northern Tibetan Plateau. Environmental Monitoring and Assessment, 2015, 187, 491.	2.7	13
46	Elevation-dependent relationships between climate change and grassland vegetation variation across the Qinghai-Xizang Plateau. International Journal of Climatology, 2015, 35, 1638-1647.	3.5	85
47	A Meta-analysis of the Effects of Experimental Warming on Plant Physiology and Growth on the Tibetan Plateau. Journal of Plant Growth Regulation, 2015, 34, 57-65.	5.1	86
48	Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau. PLoS ONE, 2015, 10, e0135173.	2.5	60
49	Response of Soil C and N, Dissolved Organic C and N, and Inorganic N to Short-Term Experimental Warming in an Alpine Meadow on the Tibetan Plateau. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	25
50	Response of Soil Respiration to Grazing in an Alpine Meadow at Three Elevations in Tibet. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	21
51	Relationship between the Growing Season Maximum Enhanced Vegetation Index and Climatic Factors on the Tibetan Plateau. Remote Sensing, 2014, 6, 6765-6789.	4.0	52
52	Effects of livestock exclusion and climate change on aboveground biomass accumulation in alpine pastures across the Northern Tibetan Plateau. Science Bulletin, 2014, 59, 4332-4340.	1.7	34
53	Precipitation and species composition primarily determine the diversity–productivity relationship of alpine grasslands on the Northern Tibetan Plateau. Alpine Botany, 2014, 124, 13-25.	2.4	59
54	Effects of Grazing Exclusion on Plant Functional Group Diversity of Alpine Grasslands Along a Precipitation Gradient on the Northern Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 2014, 46, 419-429.	1.1	40

XIAN-ZHOU ZHANG

#	Article	IF	CITATIONS
55	Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in alpine meadows in northern Tibet, China. Chinese Geographical Science, 2014, 24, 488-498.	3.0	72
56	The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 2014, 189-190, 11-18.	4.8	486
57	Response of ecosystem respiration to experimental warming and clipping at daily time scale in an alpine meadow of tibet. Journal of Mountain Science, 2013, 10, 455-463.	2.0	26
58	Biomass allocation patterns of alpine grassland species and functional groups along a precipitation gradient on the Northern Tibetan Plateau. Journal of Mountain Science, 2013, 10, 1097-1108.	2.0	33
59	Grazing-Exclusion Effects on Aboveground Biomass and Water-Use Efficiency of Alpine Grasslands on the Northern Tibetan Plateau. Rangeland Ecology and Management, 2013, 66, 454-461.	2.3	65
60	Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet. Journal of Applied Remote Sensing, 2013, 7, 073505.	1.3	58
61	Responses of Ecosystem CO _{2} Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau. Scientific World Journal, The, 2013, 2013, 1-11.	2.1	20
62	Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Canadian Journal of Remote Sensing, 2012, 38, 157-168.	2.4	20
63	Ecological and Environmental Issues Faced by a Developing Tibet. Environmental Science & Technology, 2012, 46, 1979-1980.	10.0	123
64	Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau. Applied Soil Ecology, 2012, 61, 158-160.	4.3	70
65	Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau. European Journal of Soil Biology, 2012, 52, 27-29.	3.2	48
66	Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth Sciences, 2011, 64, 1911-1919.	2.7	99
67	Effect of solar radiation on net ecosystem CO2 exchange of alpine meadow on the Tibetan Plateau. Journal of Chinese Geography, 2011, 21, 666-676.	3.9	18
68	Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China Life Sciences, 2010, 53, 1142-1151.	4.9	73
69	Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. Ecological Modelling, 2007, 208, 129-134.	2.5	20
70	Net ecosystem CO2 exchange and controlling factors in a steppe—Kobresia meadow on the Tibetan Plateau. Science in China Series D: Earth Sciences, 2006, 49, 207-218.	0.9	97
71	Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change, 2004, 41, 241-249.	3.5	296
72	Measuring and modelling photosynthetically active radiation in Tibet Plateau during April–October. Agricultural and Forest Meteorology, 2000, 102, 207-212.	4.8	87