Hans R Schöler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8446603/publications.pdf Version: 2024-02-01

		4388	3732
310	35,454	86	179
papers	citations	h-index	g-index
335	335	335	28651
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A balanced Oct4 interactome is crucial for maintaining pluripotency. Science Advances, 2022, 8, eabe4375.	10.3	17
2	SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Reports, 2022, 17, 789-803.	4.8	22
3	Generation of a human iPSC line (MPIi008-A) from a patient with Denys-Drash syndrome. Stem Cell Research, 2022, 62, 102826.	0.7	0
4	Rapid generation of ACE2 humanized inbred mouse model for COVID-19 with tetraploid complementation. National Science Review, 2021, 8, nwaa285.	9.5	19
5	Permissive epigenomes endow reprogramming competence to transcriptional regulators. Nature Chemical Biology, 2021, 17, 47-56.	8.0	35
6	Generation and Maintenance of Homogeneous Human Midbrain Organoids. Bio-protocol, 2021, 11, e4049.	0.4	4
7	The Hippo pathway component Wwc2 is a key regulator of embryonic development and angiogenesis in mice. Cell Death and Disease, 2021, 12, 117.	6.3	13
8	Directed Evolution of an Enhanced POU Reprogramming Factor for Cell Fate Engineering. Molecular Biology and Evolution, 2021, 38, 2854-2868.	8.9	11
9	Donor cell memory confers a metastable state of directly converted cells. Cell Stem Cell, 2021, 28, 1291-1306.e10.	11.1	5
10	One-step Reprogramming of Human Fibroblasts into Oligodendrocyte-like Cells by SOX10, OLIG2, and NKX6.2. Stem Cell Reports, 2021, 16, 771-783.	4.8	19
11	Biological importance of OCT transcription factors in reprogramming and development. Experimental and Molecular Medicine, 2021, 53, 1018-1028.	7.7	16
12	Residual pluripotency is required for inductive germ cell segregation. EMBO Reports, 2021, 22, e52553.	4.5	5
13	Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids. Frontiers in Molecular Neuroscience, 2021, 14, 715054.	2.9	19
14	Dopamine signaling regulates hematopoietic stem and progenitor cell function. Blood, 2021, 138, 2051-2065.	1.4	19
15	Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science, 2021, 373, 1537-1540.	12.6	135
16	Ronin governs the metabolic capacity of the embryonic lineage for postâ€implantation development. EMBO Reports, 2021, 22, e53048.	4.5	4
17	YAP establishes epiblast responsiveness to inductive signals for germ cell fate. Development (Cambridge), 2021, 148, .	2.5	10
18	Combining Automated Organoid Workflows with Artificial Intelligenceâ€Based Analyses: Opportunities to Build a New Generation of Interdisciplinary Highâ€Throughput Screens for Parkinson's Disease and Beyond. Movement Disorders, 2021, 36, 2745-2762.	3.9	10

#	Article	IF	CITATIONS
19	Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. PLoS ONE, 2021, 16, e0258427.	2.5	2
20	Force-induced changes of $\hat{l}\pm$ -catenin conformation stabilize vascular junctions independently of vinculin. Journal of Cell Science, 2021, 134, .	2.0	9
21	Culturing human iPSC-derived neural progenitor cells on nanowire arrays: mapping the impact of nanowire length and array pitch on proliferation, viability, and membrane deformation. Nanoscale, 2021, 13, 20052-20066.	5.6	3
22	Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming. EMBO Journal, 2020, 39, e99165.	7.8	29
23	Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo. Science Advances, 2020, 6, .	10.3	29
24	Wnt/Beta-catenin/Esrrb signalling controls the tissue-scale reorganization and maintenance of the pluripotent lineage during murine embryonic diapause. Nature Communications, 2020, 11, 5499.	12.8	35
25	Reprogramming competence of OCT factors is determined by transactivation domains. Science Advances, 2020, 6, .	10.3	25
26	Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathologica, 2020, 140, 715-736.	7.7	53
27	Generation of a human iPSC line (MPIi007-A) from a patient with Metachromatic leukodystrophy. Stem Cell Research, 2020, 48, 101993.	0.7	3
28	R-loops coordinate with SOX2 in regulating reprogramming to pluripotency. Science Advances, 2020, 6, eaba0777.	10.3	36
29	Nucleosomal DNA Dynamics Mediate Oct4 Pioneer Factor Binding. Biophysical Journal, 2020, 118, 2280-2296.	0.5	39
30	Generation of human androgenetic induced pluripotent stem cells. Scientific Reports, 2020, 10, 3614.	3.3	0
31	Generation of a human iPSC line (MPIi006-A) from a patient with Pelizaeus-Merzbacher disease. Stem Cell Research, 2020, 46, 101839.	0.7	1
32	Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model. ELife, 2020, 9, .	6.0	21
33	A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. ELife, 2020, 9, .	6.0	117
34	Oct4 and Hnf4α-induced hepatic stem cells ameliorate chronic liver injury in liver fibrosis model. PLoS ONE, 2019, 14, e0221085.	2.5	10
35	Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2. Nature Communications, 2019, 10, 3477.	12.8	60
36	The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery. Cell Chemical Biology, 2019, 26, 1050-1066.	5.2	31

#	Article	IF	CITATIONS
37	Excluding Oct4 from Yamanaka Cocktail Unleashes the Developmental Potential of iPSCs. Cell Stem Cell, 2019, 25, 737-753.e4.	11.1	92
38	Discovery of the Hedgehog Pathway Inhibitor Pipinib that Targets PI4KIIIß. Angewandte Chemie - International Edition, 2019, 58, 16617-16628.	13.8	10
39	Discovery of the Hedgehog Pathway Inhibitor Pipinib that Targets PI4KIIIß. Angewandte Chemie, 2019, 131, 16770-16781.	2.0	4
40	Metastable Reprogramming State of Single Transcription Factor-Derived Induced Hepatocyte-Like Cells. Stem Cells International, 2019, 2019, 1-11.	2.5	1
41	hnRNP-K Targets Open Chromatin in Mouse Embryonic Stem Cells in Concert with Multiple Regulators. Stem Cells, 2019, 37, 1018-1029.	3.2	11
42	Fusion of Reprogramming Factors Alters the Trajectory of Somatic Lineage Conversion. Cell Reports, 2019, 27, 30-39.e4.	6.4	23
43	Dual Inhibition of GSK3β and CDK5 Protects the Cytoskeleton of Neurons from Neuroinflammatory-Mediated Degeneration InÂVitro and InÂVivo. Stem Cell Reports, 2019, 12, 502-517.	4.8	45
44	Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathologica Communications, 2019, 7, 222.	5.2	49
45	Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning. Nature Communications, 2018, 9, 899.	12.8	60
46	Dynarrestin, a Novel Inhibitor of Cytoplasmic Dynein. Cell Chemical Biology, 2018, 25, 357-369.e6.	5.2	56
47	Rules governing the mechanism of epigenetic reprogramming memory. Epigenomics, 2018, 10, 149-174.	2.1	10
48	Genome-wide tracking of dCas9-methyltransferase footprints. Nature Communications, 2018, 9, 597.	12.8	114
49	Direct Conversion of Mouse Fibroblasts into Cholangiocyte Progenitor Cells. Stem Cell Reports, 2018, 10, 1522-1536.	4.8	11
50	Inhibition of BET selectively eliminates undifferentiated pluripotent stem cells. Science Bulletin, 2018, 63, 477-487.	9.0	4
51	Reduction of Fibrosis and Scar Formation by Partial Reprogramming In Vivo. Stem Cells, 2018, 36, 1216-1225.	3.2	50
52	Two-Step Generation of Oligodendrocyte Progenitor Cells From Mouse Fibroblasts for Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2018, 12, 198.	3.7	9
53	Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency. Cell Stem Cell, 2018, 23, 266-275.e6.	11.1	79
54	Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells. Molecules and Cells, 2018, 41, 631-638.	2.6	9

#	Article	IF	CITATIONS
55	GAA deficiency in Pompe disease is alleviated by exon inclusion in iPS cell-derived skeletal muscle cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY30-2.	0.0	0
56	P3BSseq: parallel processing pipeline software for automatic analysis of bisulfite sequencing data. Bioinformatics, 2017, 33, 428-431.	4.1	13
57	Single-cell gene expression analysis reveals diversity among human spermatogonia. Molecular Human Reproduction, 2017, 23, 79-90.	2.8	37
58	Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2243-E2252.	7.1	189
59	Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Scientific Reports, 2017, 7, 42991.	3.3	76
60	Totipotency in the mouse. Journal of Molecular Medicine, 2017, 95, 687-694.	3.9	18
61	Small-molecule phenotypic screening with stem cells. Nature Chemical Biology, 2017, 13, 560-563.	8.0	11
62	GAA Deficiency in Pompe Disease Is Alleviated by Exon Inclusion in iPSC-Derived Skeletal Muscle Cells. Molecular Therapy - Nucleic Acids, 2017, 7, 101-115.	5.1	56
63	Changing <scp>POU</scp> dimerization preferences converts Oct6 into a pluripotency inducer. EMBO Reports, 2017, 18, 319-333.	4.5	42
64	FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling. Stem Cell Reports, 2017, 9, 1423-1431.	4.8	77
65	Transcriptional regulation of endothelial cell behavior during sprouting angiogenesis. Nature Communications, 2017, 8, 726.	12.8	71
66	Emergence of CD43-Expressing Hematopoietic Progenitors from Human Induced Pluripotent Stem Cells. Transfusion Medicine and Hemotherapy, 2017, 44, 143-150.	1.6	18
67	Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cellâ€based Compound Discovery and Target Prediction. Angewandte Chemie - International Edition, 2017, 56, 13021-13025.	13.8	22
68	Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports, 2017, 9, 1275-1290.	4.8	12
69	DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism. BMC Genomics, 2017, 18, 964.	2.8	80
70	Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors. Stem Cells International, 2016, 2016, 1-6.	2.5	5
71	Establishment of feeder-free culture system for human induced pluripotent stem cell on DAS nanocrystalline graphene. Scientific Reports, 2016, 6, 20708.	3.3	11
72	Distinct Enhancer Activity of Oct4 in Naive and Primed Mouse Pluripotency. Stem Cell Reports, 2016, 7, 911-926.	4.8	63

#	Article	IF	CITATIONS
73	Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1. Cell Chemical Biology, 2016, 23, 494-507.	5.2	25
74	Lineage Segregation in the Totipotent Embryo. Current Topics in Developmental Biology, 2016, 117, 301-317.	2.2	15
75	Generation of Integration-free Induced Neural Stem Cells from Mouse Fibroblasts. Journal of Biological Chemistry, 2016, 291, 14199-14212.	3.4	24
76	Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes InÂVivo Attenuates Liver Fibrosis. Cell Stem Cell, 2016, 18, 797-808.	11.1	181
77	Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming. Cell Reports, 2016, 15, 814-829.	6.4	61
78	Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain. Stem Cell Research, 2016, 16, 776-781.	0.7	6
79	Gadd45a is a heterochromatin relaxer that enhances <scp>iPS</scp> cell generation. EMBO Reports, 2016, 17, 1641-1656.	4.5	28
80	Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell, 2016, 19, 298-309.	11.1	116
81	Enhanced OCT4 transcriptional activity substitutes for exogenous SOX2 in cellular reprogramming. Scientific Reports, 2016, 6, 19415.	3.3	7
82	Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs. Cell Reports, 2016, 15, 787-800.	6.4	28
83	Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status. Stem Cell Research, 2016, 16, 460-468.	0.7	11
84	Epigenetic Aberrations Are Not Specific to Transcription Factor-Mediated Reprogramming. Stem Cell Reports, 2016, 6, 35-43.	4.8	8
85	Epigenetic alteration of imprinted genes during neural differentiation of germline-derived pluripotent stem cells. Epigenetics, 2016, 11, 177-183.	2.7	9
86	Stepwise Clearance of Repressive Roadblocks Drives Cardiac Induction in Human ESCs. Cell Stem Cell, 2016, 18, 341-353.	11.1	89
87	Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Scientific Reports, 2015, 5, 15706.	3.3	23
88	Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Scientific Reports, 2015, 5, 13533.	3.3	58
89	A Dynamic Role of TBX3 in the Pluripotency Circuitry. Stem Cell Reports, 2015, 5, 1155-1170.	4.8	57
90	Universal Cardiac Induction of Human Pluripotent Stem Cells in Two and Three-Dimensional Formats: Implications for In Vitro Maturation. Stem Cells, 2015, 33, 1456-1469.	3.2	76

#	Article	IF	CITATIONS
91	Distinct Neurodegenerative Changes in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia Linked to Mutant TAU Protein. Stem Cell Reports, 2015, 5, 83-96.	4.8	82
92	Human primordial germ cell commitment <i>inÂvitro</i> associates with a unique PRDM14 expression profile. EMBO Journal, 2015, 34, 1009-1024.	7.8	122
93	Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica, 2015, 100, 32-41.	3.5	67
94	Hypoxia Induces Pluripotency in Primordial Germ Cells by HIF1α Stabilization and Oct4 Deregulation. Antioxidants and Redox Signaling, 2015, 22, 205-223.	5.4	21
95	Germ Cell Nuclear Factor Regulates Gametogenesis in Developing Gonads. PLoS ONE, 2014, 9, e103985.	2.5	14
96	Therapeutic Potential of Induced Neural Stem Cells for Spinal Cord Injury. Journal of Biological Chemistry, 2014, 289, 32512-32525.	3.4	75
97	A Novel Feeder-Free Culture System for Expansion of Mouse Spermatogonial Stem Cells. Molecules and Cells, 2014, 37, 473-479.	2.6	26
98	CellNet—Where Your Cells Are Standing. Cell, 2014, 158, 699-701.	28.9	6
99	Origin-Dependent Neural Cell Identities in Differentiated Human iPSCs InÂVitro and after Transplantation into the Mouse Brain. Cell Reports, 2014, 8, 1697-1703.	6.4	41
100	Nanog induces hyperplasia without initiating tumors. Stem Cell Research, 2014, 13, 300-315.	0.7	21
101	Establishment of a primed pluripotent epiblast stem cell in FGF4-based conditions. Scientific Reports, 2014, 4, 7477.	3.3	41
102	BRG1 Is Required to Maintain Pluripotency of Murine Embryonic Stem Cells. BioResearch Open Access, 2014, 3, 1-8.	2.6	17
103	Frame retractions so they hold firm. Nature, 2014, 513, 172-172.	27.8	0
104	Direct conversion of mouse fibroblasts into induced neural stem cells. Nature Protocols, 2014, 9, 871-881.	12.0	69
105	OCT4: Dynamic DNA binding pioneers stem cell pluripotency. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 138-154.	1.9	123
106	Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature, 2014, 509, 101-104.	27.8	48
107	Counteracting Activities of OCT4 and KLF4 during Reprogramming to Pluripotency. Stem Cell Reports, 2014, 2, 351-365.	4.8	11
108	Inhibition of TGFβ Signaling Promotes Ground State Pluripotency. Stem Cell Reviews and Reports, 2014, 10, 16-30.	5.6	60

Hans R Schöler

#	Article	IF	CITATIONS
109	Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells and Development, 2014, 23, 193-208.	2.1	48
110	Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Human Molecular Genetics, 2014, 23, 2005-2022.	2.9	121
111	Reactivation of inactive X chromosome and post-transcriptional reprogramming of Xist in induced pluripotent stem cells. Journal of Cell Science, 2014, 128, 81-7.	2.0	15
112	The POU-er of gene nomenclature. Development (Cambridge), 2014, 141, 2921-2923.	2.5	33
113	Human Adult White Matter Progenitor Cells Are Multipotent Neuroprogenitors Similar to Adult Hippocampal Progenitors. Stem Cells Translational Medicine, 2014, 3, 458-469.	3.3	26
114	Investigating human disease using stem cell models. Nature Reviews Genetics, 2014, 15, 625-639.	16.3	225
115	Induced Neural Stem Cells Achieve Long-Term Survival and Functional Integration in the Adult Mouse Brain. Stem Cell Reports, 2014, 3, 423-431.	4.8	51
116	iPS cell derived neuronal cells for drug discovery. Trends in Pharmacological Sciences, 2014, 35, 510-519.	8.7	57
117	Role of Oct4 in the early embryo development. Cell Regeneration, 2014, 3, 3:7.	2.6	144
118	Structural Basis for the SOX-Dependent Genomic Redistribution of OCT4 in Stem Cell Differentiation. Structure, 2014, 22, 1274-1286.	3.3	46
119	Establishment of totipotency does not depend onÂOct4A. Nature Cell Biology, 2013, 15, 1089-1097.	10.3	99
120	Analysis of protein-coding mutations in hiPSCs and their possible role during somatic cell reprogramming. Nature Communications, 2013, 4, 1382.	12.8	58
121	Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage. Biomaterials, 2013, 34, 8131-8139.	11.4	108
122	Highly Enantioselective Catalytic Synthesis of Neurite Growth-Promoting Secoyohimbanes. Chemistry and Biology, 2013, 20, 500-509.	6.0	47
123	SILAC Proteomics of Planarians Identifies Ncoa5 as a Conserved Component of Pluripotent Stem Cells. Cell Reports, 2013, 5, 1142-1155.	6.4	44
124	Disclosing the crosstalk among DNA methylation, transcription factors, and histone marks in human pluripotent cells through discovery of DNA methylation motifs. Genome Research, 2013, 23, 2013-2029.	5.5	32
125	Conversion of genomic imprinting by reprogramming and redifferentiation. Journal of Cell Science, 2013, 126, 2516-24.	2.0	24
126	TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports, 2013, 1, 248-265.	4.8	72

#	Article	IF	CITATIONS
127	A unique Oct4 interface is crucial for reprogramming to pluripotency. Nature Cell Biology, 2013, 15, 295-301.	10.3	135
128	A central role for TFIID in the pluripotent transcription circuitry. Nature, 2013, 495, 516-519.	27.8	73
129	Rapid and Efficient Generation of Neurons from Human Pluripotent Stem Cells in a Multititre Plate Format. Journal of Visualized Experiments, 2013, , e4335.	0.3	5
130	Genetic Correction of a LRRK2 Mutation in Human iPSCs Links Parkinsonian Neurodegeneration to ERK-Dependent Changes in Gene Expression. Cell Stem Cell, 2013, 12, 354-367.	11.1	448
131	Expansion and Differentiation of Germline-Derived Pluripotent Stem Cells on Biomaterials. Tissue Engineering - Part A, 2013, 19, 1067-1080.	3.1	4
132	Discovery of Neuritogenic Compound Classes Inspired by Natural Products. Angewandte Chemie - International Edition, 2013, 52, 9576-9581.	13.8	72
133	Sustained Knockdown of a Disease-Causing Gene in Patient-Specific Induced Pluripotent Stem Cells Using Lentiviral Vector-Based Gene Therapy. Stem Cells Translational Medicine, 2013, 2, 641-654.	3.3	36
134	A combined approach facilitates the reliable detection of human spermatogonia in vitro. Human Reproduction, 2013, 28, 3012-3025.	0.9	71
135	Effects of Erythropoietin in Murine-Induced Pluripotent Cell-Derived Panneural Progenitor Cells. Molecular Medicine, 2013, 19, 399-408.	4.4	0
136	Parthenogenetic stem cells for tissue-engineered heart repair. Journal of Clinical Investigation, 2013, 123, 1285-1298.	8.2	96
137	Derivation and Expansion Using Only Small Molecules of Human Neural Progenitors for Neurodegenerative Disease Modeling. PLoS ONE, 2013, 8, e59252.	2.5	370
138	Sox2 Level Is a Determinant of Cellular Reprogramming Potential. PLoS ONE, 2013, 8, e67594.	2.5	5
139	Reprogramming to Pluripotency through a Somatic Stem Cell Intermediate. PLoS ONE, 2013, 8, e85138.	2.5	13
140	Isolation of Novel Multipotent Neural Crest-Derived Stem Cells from Adult Human Inferior Turbinate. Stem Cells and Development, 2012, 21, 742-756.	2.1	106
141	Reprogramming to pluripotency is an ancient trait of vertebrate Oct4 and Pou2 proteins. Nature Communications, 2012, 3, 1279.	12.8	64
142	Discovery of Inhibitors of Microglial Neurotoxicity Acting Through Multiple Mechanisms Using a Stem-Cell-Based Phenotypic Assay. Cell Stem Cell, 2012, 11, 620-632.	11.1	75
143	REST and its downstream molecule Mek5 regulate survival of primordial germ cells. Developmental Biology, 2012, 372, 190-202.	2.0	13
144	Reprogramming and the mammalian germline: the Weismann barrier revisited. Current Opinion in Cell Biology, 2012, 24, 716-723.	5.4	43

#	Article	IF	CITATIONS
145	Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors. Cell Stem Cell, 2012, 10, 465-472.	11.1	511
146	Restoring Stem Cell Function in Aged Tissues by Direct Reprogramming?. Cell Stem Cell, 2012, 10, 653-656.	11.1	7
147	Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16196-16201.	7.1	152
148	Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nature Communications, 2012, 3, 1076.	12.8	92
149	Epithelial morphogenesis of germline-derived pluripotent stem cells on organotypic skin equivalents in vitro. Differentiation, 2012, 83, 138-147.	1.9	12
150	Increased Reprogramming Capacity of Mouse Liver Progenitor Cells, Compared With Differentiated Liver Cells, Requires the BAF Complex. Gastroenterology, 2012, 142, 907-917.	1.3	47
151	Directing reprogramming to pluripotency by transcription factors. Current Opinion in Genetics and Development, 2012, 22, 416-422.	3.3	30
152	Reestablishment of the inactive X chromosome to the ground state through cell fusion-induced reprogramming. Cellular and Molecular Life Sciences, 2012, 69, 4067-4077.	5.4	3
153	Zfp296 Is a Novel, Pluripotent-Specific Reprogramming Factor. PLoS ONE, 2012, 7, e34645.	2.5	37
154	Comprehensive Human Transcription Factor Binding Site Map for Combinatory Binding Motifs Discovery. PLoS ONE, 2012, 7, e49086.	2.5	5
155	Differentiation Efficiency of Induced Pluripotent Stem Cells Depends on the Number of Reprogramming Factors. Stem Cells, 2012, 30, 570-579.	3.2	60
156	Concise Review: Oct4 and More: The Reprogramming Expressway. Stem Cells, 2012, 30, 15-21.	3.2	98
157	CD49f Enhances Multipotency and Maintains Stemness Through the Direct Regulation of OCT4 and SOX2. Stem Cells, 2012, 30, 876-887.	3.2	129
158	Autologous Pluripotent Stem Cells Generated from Adult Mouse Testicular Biopsy. Stem Cell Reviews and Reports, 2012, 8, 435-444.	5.6	22
159	Small Molecule-Assisted, Line-Independent Maintenance of Human Pluripotent Stem Cells in Defined Conditions. PLoS ONE, 2012, 7, e41958.	2.5	76
160	Oct4-Enhanced Green Fluorescent Protein Transgenic Pigs: A New Large Animal Model for Reprogramming Studies. Stem Cells and Development, 2011, 20, 1563-1575.	2.1	49
161	Sonic Hedgehog Shedding Results in Functional Activation of the Solubilized Protein. Developmental Cell, 2011, 20, 764-774.	7.0	78
162	Ultrastructural Characterization of Mouse Embryonic Stem Cell-Derived Oocytes and Granulosa Cells. Stem Cells and Development, 2011, 20, 2205-2215.	2.1	15

#	Article	IF	CITATIONS
163	Role of mouse maternal Cdx2: what's the debate all about?. Reproductive BioMedicine Online, 2011, 22, 516-518.	2.4	5
164	Neural Stem Cells Achieve and Maintain Pluripotency without Feeder Cells. PLoS ONE, 2011, 6, e21367.	2.5	6
165	Neuroinflammatory and behavioural changes in the Atp7B mutant mouse model of Wilson's disease. Journal of Neurochemistry, 2011, 118, 105-112.	3.9	41
166	Direct reprogramming of fibroblasts into epiblast stem cells. Nature Cell Biology, 2011, 13, 66-71.	10.3	111
167	FCF signalling inhibits neural induction in human embryonic stem cells. EMBO Journal, 2011, 30, 4874-4884.	7.8	123
168	Visualization and Exploration of Conserved Regulatory Modules Using ReXSpecies 2. BMC Evolutionary Biology, 2011, 11, 267.	3.2	3
169	Concise Review: Challenging the Pluripotency of Human Testis-Derived ESC-like Cells. Stem Cells, 2011, 29, 1165-1169.	3.2	33
170	Brief Report: Evaluating the Potential of Putative Pluripotent Cells Derived from Human Testis. Stem Cells, 2011, 29, 1304-1309.	3.2	25
171	Distinct Developmental Ground States of Epiblast Stem Cell Lines Determine Different Pluripotency Features. Stem Cells, 2011, 29, 1496-1503.	3.2	98
172	MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology, 2011, 53, 1651-1661.	7.3	69
173	Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 426-435.	1.5	61
174	Pluripotent Hybrid Cells Contribute to Extraembryonic as well as Embryonic Tissues. Stem Cells and Development, 2011, 20, 1063-1069.	2.1	12
175	Identification of genes specific to mouse primordial germ cells through dynamic global gene expression. Human Molecular Genetics, 2011, 20, 115-125.	2.9	45
176	Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming. Molecular Therapy, 2011, 19, 782-789.	8.2	224
177	<i>Bcar3</i> Is Expressed in Sertoli Cells and Germ Cells of the Developing Testis in Mice. Sexual Development, 2011, 5, 197-204.	2.0	2
178	Effects of Neural Progenitor Cells on Sensorimotor Recovery and Endogenous Repair Mechanisms After Photothrombotic Stroke. Stroke, 2011, 42, 1757-1763.	2.0	70
179	Efficient Derivation of Pluripotent Stem Cells from siRNA-Mediated <i>Cdx2</i> -Deficient Mouse Embryos. Stem Cells and Development, 2011, 20, 485-493.	2.1	7
180	Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Research, 2011, 21, 1305-1315.	12.0	118

#	Article	IF	CITATIONS
181	Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells. PLoS Biology, 2011, 9, e1001099.	5.6	50
182	Systematic Analysis of Gene Expression Differences between Left and Right Atria in Different Mouse Strains and in Human Atrial Tissue. PLoS ONE, 2011, 6, e26389.	2.5	80
183	Direct Reprogramming of Human Neural Stem Cells by the Single Transcription Factor OCT4. Pancreatic Islet Biology, 2011, , 439-447.	0.3	0
184	Breakthrough in Stem Cell Research? The Reprogramming of Somatic Cells to Pluripotent Stem Cells: Overview and Outlook. , 2011, , 7-24.		0
185	Overlapping Genes May Control Reprogramming of Mouse Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) and Breast Cancer Stem Cells. In Silico Biology, 2010, 10, 207-221.	0.9	6
186	ExprEssence - Revealing the essence of differential experimental data in the context of an interaction/regulation net-work. BMC Systems Biology, 2010, 4, 164.	3.0	71
187	Induction of pluripotency in human cord blood unrestricted somatic stem cells. Experimental Hematology, 2010, 38, 809-818.e2.	0.4	55
188	Neural Induction Intermediates Exhibit Distinct Roles of Fgf Signaling. Stem Cells, 2010, 28, 1772-1781.	3.2	35
189	Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO Journal, 2010, 29, 1877-1888.	7.8	221
190	Human adult germline stem cells in question. Nature, 2010, 465, E1-E1.	27.8	82
191	Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nature Protocols, 2010, 5, 921-928.	12.0	52
192	In vitro derivation of germ cells from embryonic stem cells. Frontiers in Bioscience - Landmark, 2010, 15, 46.	3.0	15
193	Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development (Cambridge), 2010, 137, 1583-1583.	2.5	2
194	Oct1 regulates trophoblast development during early mouse embryogenesis. Development (Cambridge), 2010, 137, 3551-3560.	2.5	49
195	Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development (Cambridge), 2010, 137, 4159-4169.	2.5	113
196	p53 connects tumorigenesis and reprogramming to pluripotency. Journal of Experimental Medicine, 2010, 207, 2045-2048.	8.5	71
197	Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development (Cambridge), 2010, 137, 1055-1065.	2.5	63
198	Conversion of Mouse Epiblast Stem Cells to an Earlier Pluripotency State by Small Molecules. Journal of Biological Chemistry, 2010, 285, 29676-29680.	3.4	107

#	Article	IF	CITATIONS
199	Cell Fusion-Induced Reprogramming. Methods in Molecular Biology, 2010, 636, 179-190.	0.9	12
200	Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming. Cell, 2010, 141, 943-955.	28.9	357
201	Epiblast Stem Cell Subpopulations Represent Mouse Embryos of Distinct Pregastrulation Stages. Cell, 2010, 143, 617-627.	28.9	195
202	Conserved and Divergent Roles of FGF Signaling in Mouse Epiblast Stem Cells and Human Embryonic Stem Cells. Cell Stem Cell, 2010, 6, 215-226.	11.1	308
203	Induced Pluripotent Stem Cells at Nanoscale. Stem Cells and Development, 2010, 19, 615-620.	2.1	35
204	Induced Pluripotent Stem Cells. Methods in Enzymology, 2010, 476, 309-325.	1.0	16
205	The PluriNetWork: An Electronic Representation of the Network Underlying Pluripotency in Mouse, and Its Applications. PLoS ONE, 2010, 5, e15165.	2.5	67
206	p53 connects tumorigenesis and reprogramming to pluripotency. Journal of Cell Biology, 2010, 191, i2-i2.	5.2	0
207	Molecular Bases of Pluripotency. , 2009, , 37-60.		2
208	Reprogramming of Xist against the pluripotent state in fusion hybrids. Journal of Cell Science, 2009, 122, 4122-4129.	2.0	16
209	Hepatic differentiation of pluripotent stem cells. Biological Chemistry, 2009, 390, 1047-55.	2.5	19
210	Laser secondary neutral mass spectrometry for copper detection in microâ€scale biopsies. Journal of Mass Spectrometry, 2009, 44, 1417-1422.	1.6	22
211	Generation of Parthenogenetic Induced Pluripotent Stem Cells from Parthenogenetic Neural Stem Cells. Stem Cells, 2009, 27, 2962-2968.	3.2	13
212	Generation of Human-Induced Pluripotent Stem Cells in the Absence of Exogenous <i>Sox2</i> . Stem Cells, 2009, 27, 2992-3000.	3.2	297
213	Epigenetic Hierarchy Governing <i>Nestin</i> Expression. Stem Cells, 2009, 27, 1088-1097.	3.2	35
214	Direct reprogramming of human neural stem cells by OCT4. Nature, 2009, 461, 649-653.	27.8	652
215	Generation of induced pluripotent stem cells from neural stem cells. Nature Protocols, 2009, 4, 1464-1470.	12.0	79
216	Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell, 2009, 136, 411-419.	28.9	858

#	Article	IF	CITATIONS
217	Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell, 2009, 4, 381-384.	11.1	1,652
218	Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell, 2009, 4, 581.	11.1	39
219	Induction of Pluripotency in Adult Unipotent Germline Stem Cells. Cell Stem Cell, 2009, 5, 87-96.	11.1	246
220	Generation of Induced Pluripotent Stem Cells from Human Cord Blood. Cell Stem Cell, 2009, 5, 434-441.	11.1	450
221	Regulatory circuits underlying pluripotency and reprogramming. Trends in Pharmacological Sciences, 2009, 30, 296-302.	8.7	61
222	Post-Translational Regulation of Oct4 Transcriptional Activity. PLoS ONE, 2009, 4, e4467.	2.5	112
223	Observing and Manipulating Pluripotency in Normal and Cloned Mouse Embryos. , 2009, , 101-121.		1
224	Methylation status of putative differentially methylated regions of porcine <i>IGF2</i> and <i>H19</i> . Molecular Reproduction and Development, 2008, 75, 777-784.	2.0	34
225	Pluripotential Reprogramming of the Somatic Genome in Hybrid Cells Occurs with the First Cell Cycle. Stem Cells, 2008, 26, 445-454.	3.2	79
226	Absence of OCT4 Expression in Somatic Tumor Cell Lines. Stem Cells, 2008, 26, 692-697.	3.2	112
227	Enhanced Reprogramming of Xist by Induced Upregulation of Tsix and Dnmt3a. Stem Cells, 2008, 26, 2821-2831.	3.2	31
228	Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008, 454, 646-650.	27.8	890
229	ReXSpecies – a tool for the analysis of the evolution of gene regulation across species. BMC Evolutionary Biology, 2008, 8, 111.	3.2	6
230	Subsets of cloned mouse embryos and their non-random relationship to development and nuclear reprogramming. Mechanisms of Development, 2008, 125, 153-166.	1.7	23
231	A Combined Chemical and Genetic Approach for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2008, 2, 525-528.	11.1	664
232	A Combined Chemical and Genetic Approach for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2008, 3, 119.	11.1	4
233	Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Oct4 and Klf4 with Small-Molecule Compounds. Cell Stem Cell, 2008, 3, 568-574.	11.1	837
234	In vitro differentiation of reprogrammed murine somatic cells into hepatic precursor cells. Biological Chemistry, 2008, 389, 889-96.	2.5	21

#	Article	IF	CITATIONS
235	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins. Molecular and Cellular Proteomics, 2008, 7, 672-683.	3.8	261
236	Distinct populations of tumor-initiating cells derived from a tumor generated by rat mammary cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16940-16945.	7.1	31
237	Commentary: Highlight on stem cell research. Biological Chemistry, 2008, 389, 789-789.	2.5	0
238	Murine Embryonic Stem Cell-Derived Hepatic Progenitor Cells Engraft in Recipient Livers with Limited Capacity of Liver Tissue Formation. Cell Transplantation, 2008, 17, 313-323.	2.5	53
239	Targeted Mutation Reveals Essential Functions of the Homeodomain Transcription Factor Shox2 in Sinoatrial and Pacemaking Development. Circulation, 2007, 115, 1830-1838.	1.6	222
240	Sumoylation of Oct4 Enhances Its Stability, DNA Binding, and Transactivation. Journal of Biological Chemistry, 2007, 282, 21551-21560.	3.4	154
241	Oct4 Expression Is Not Required for Mouse Somatic Stem Cell Self-Renewal. Cell Stem Cell, 2007, 1, 403-415.	11.1	376
242	Induction of Pluripotency: From Mouse to Human. Cell, 2007, 131, 834-835.	28.9	55
243	ETHICS: The ISSCR Guidelines for Human Embryonic Stem Cell Research. Science, 2007, 315, 603-604.	12.6	104
244	Erasure of Cellular Memory by Fusion with Pluripotent Cells. Stem Cells, 2007, 25, 1013-1020.	3.2	40
245	Oocytes originating from skin?. Nature Cell Biology, 2006, 8, 313-314.	10.3	11
246	The <i>Caudal</i> -Related Protein Cdx2 Promotes Trophoblast Differentiation of Mouse Embryonic Stem Cells. Stem Cells, 2006, 24, 139-144.	3.2	77
247	Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Reviews and Reports, 2006, 2, 257-264.	5.6	42
248	Embryonic Stem Cells as a Potential Source of Gametes. Seminars in Reproductive Medicine, 2006, 24, 322-329.	1.1	19
249	Self-renewal of embryonic stem cells by a small molecule. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17266-17271.	7.1	296
250	Oocytes. Methods in Enzymology, 2006, 418, 284-307.	1.0	7
251	Spermatogonia: origin, physiology and prospects for conservation and manipulation of the male germ line. Reproduction, Fertility and Development, 2006, 18, 7.	0.4	37
252	Recombinant Human Albumin Supports Development of Somatic Cell Nuclear Transfer Embryos in Mice: Toward the Establishment of a Chemically Defined Cloning Protocol. Cloning and Stem Cells, 2006, 8, 24-40.	2.6	14

Hans R Schöler

#	Article	IF	CITATIONS
253	Variable Reprogramming of the Pluripotent Stem Cell Marker Oct4 in Mouse Clones: Distinct Developmental Potentials in Different Culture Environments. Stem Cells, 2005, 23, 1089-1104.	3.2	76
254	Regulatory networks in embryo-derived pluripotent stem cells. Nature Reviews Molecular Cell Biology, 2005, 6, 872-881.	37.0	610
255	Generating Oocytes and Sperm from Embryonic Stem Cells. Seminars in Reproductive Medicine, 2005, 23, 222-233.	1.1	39
256	Comparison of neurosphere cells with cumulus cells after fusion with embryonic stem cells: reprogramming potential. Reproduction, Fertility and Development, 2005, 17, 143.	0.4	29
257	Molecular Facets of Pluripotency. , 2004, , 27-44.		3
258	Activity of the Germline-Specific <1>Oct4 1 -GFP Transgene in Normal and Clone Mouse Embryos. , 2004, 254, 001-034.		23
259	Conserved POU Binding DNA Sites in the Sox2 Upstream Enhancer Regulate Gene Expression in Embryonic and Neural Stem Cells. Journal of Biological Chemistry, 2004, 279, 41846-41857.	3.4	137
260	ATP levels in clone mouse embryos. Cytogenetic and Genome Research, 2004, 105, 270-278.	1.1	7
261	Identification of a Nuclear Localization Signal in OCT4 and Generation of a Dominant Negative Mutant by Its Ablation. Journal of Biological Chemistry, 2004, 279, 37013-37020.	3.4	68
262	Oct4 is required for primordial germ cell survival. EMBO Reports, 2004, 5, 1078-1083.	4.5	513
263	Combinatorial control of gene expression. Nature Structural and Molecular Biology, 2004, 11, 812-815.	8.2	217
264	Nuclei of Embryonic Stem Cells Reprogram Somatic Cells. Stem Cells, 2004, 22, 941-949.	3.2	254
265	Stem Cell Therapies: Time to Talk to the Animals. Cloning and Stem Cells, 2004, 6, 3-4.	2.6	13
266	Redox Regulation of the Embryonic Stem Cell Transcription Factor Octâ€4 by Thioredoxin. Stem Cells, 2004, 22, 259-264.	3.2	70
267	Pluripotency in Normal and Clone Mouse Embryos. , 2004, , 639-655.		0
268	OBF1 enhances transcriptional potential of Oct1. EMBO Journal, 2003, 22, 2188-2198.	7.8	23
269	Derivation of Oocytes from Mouse Embryonic Stem Cells. Science, 2003, 300, 1251-1256.	12.6	1,015
270	Nuclear distribution of Oct-4 transcription factor in transcriptionally active and inactive mouse ocytes and its relation to RNA polymerase II and splicing factors. Journal of Cellular Biochemistry, 2003, 89, 720-732.	2.6	29

#	Article	IF	CITATIONS
271	Pluripotency deficit in clones overcome by clone-clone aggregation: epigenetic complementation?. EMBO Journal, 2003, 22, 5304-5312.	7.8	150
272	Nanog. Cell, 2003, 113, 551-552.	28.9	127
273	Identification and characterization of stem cells in prepubertal spermatogenesis in miceâ~†â~†Supplementary data associated with this article can be found at doi:10.1016/S0012-1606(03)00111-8. Developmental Biology, 2003, 258, 209-225.	2.0	224
274	Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes and Development, 2003, 17, 2048-2059.	5.9	333
275	Progeny from Sperm Obtained after Ectopic Grafting of Neonatal Mouse Testes1. Biology of Reproduction, 2003, 68, 2331-2335.	2.7	237
276	The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3663-3667.	7.1	146
277	Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes and Development, 2002, 16, 1209-1219.	5.9	476
278	Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mechanisms of Development, 2002, 115, 157-160.	1.7	305
279	A predictable ligand regulated expression strategy for stably integrated transgenes in mammalian cells in culture. Gene, 2002, 298, 159-172.	2.2	41
280	Differential activity by DNA-induced quarternary structures of POU transcription factors. Biochemical Pharmacology, 2002, 64, 979-984.	4.4	28
281	Stem cell pluripotency and transcription factor Oct4. Cell Research, 2002, 12, 321-329.	12.0	298
282	Sperm from neonatal mammalian testes grafted in mice. Nature, 2002, 418, 778-781.	27.8	427
283	Determinants of Pluripotency in Mammals. , 2002, , 109-152.		2
284	Mouse Germline Restriction of Oct4 Expression by Germ Cell Nuclear Factor. Developmental Cell, 2001, 1, 377-387.	7.0	223
285	Differential Dimer Activities of the Transcription Factor Oct-1 by DNA-Induced Interface Swapping. Molecular Cell, 2001, 8, 569-580.	9.7	114
286	Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mammalian Genome, 2001, 12, 309-317.	2.2	158
287	Crystallization of redox-insensitive Oct1 POU domain with different DNA-response elements. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1634-1638.	2.5	11
288	<i>Octâ€4</i> : Gatekeeper in the Beginnings of Mammalian Development. Stem Cells, 2001, 19, 271-278.	3.2	719

#	Article	IF	CITATIONS
289	Oct-4: Control of totipotency and germline determination. Molecular Reproduction and Development, 2000, 55, 452-457.	2.0	232
290	Modulation of the Activity of Multiple Transcriptional Activation Domains by the DNA Binding Domains Mediates the Synergistic Action of Sox2 and Oct-3 on the Fibroblast Growth Factor-4Enhancer. Journal of Biological Chemistry, 2000, 275, 23387-23397.	3.4	155
291	Phage Display Screening Reveals an Association Between Germline-specific Transcription Factor Oct-4 and Multiple Cellular Proteins. Journal of Molecular Biology, 2000, 304, 529-540.	4.2	59
292	Synergism with the Coactivator OBF-1 (OCA-B, BOB-1) Is Mediated by a Specific POU Dimer Configuration. Cell, 2000, 103, 853-864.	28.9	134
293	The onset of germ cell migration in the mouse embryo. Mechanisms of Development, 2000, 91, 61-68.	1.7	279
294	Oct-4: Lessons of Totipotency from Embryonic Stem Cells. Cells Tissues Organs, 1999, 165, 144-152.	2.3	89
295	Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Development Growth and Differentiation, 1999, 41, 675-684.	1.5	369
296	A mouse model for hereditary thyroid dysgenesis and cleft palate. Nature Genetics, 1998, 19, 395-398.	21.4	302
297	Octâ€4: more than just a POUerful marker of the mammalian germline?. Apmis, 1998, 106, 114-126.	2.0	34
298	In line with our ancestors: Oct-4 and the mammalian germ. BioEssays, 1998, 20, 722-732.	2.5	212
299	Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4. Cell, 1998, 95, 379-391.	28.9	3,037
300	Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mechanisms of Development, 1998, 71, 89-98.	1.7	455
301	In line with our ancestors: Oct4 and the mammalian germ. BioEssays, 1998, 20, 722-732.	2.5	2
302	Regulation of the <i>Oct-4</i> gene by nuclear receptors. Nucleic Acids Research, 1994, 22, 901-911.	14.5	87
303	Oct-4 Transcription Factor Is Differentially Expressed in the Mouse Embryo during Establishment of the First Two Extraembryonic Cell Lineages Involved in Implantation. Developmental Biology, 1994, 166, 259-267.	2.0	560
304	A nexus between Oct-4 and E1 A: Implications for gene regulation in embryonic stem cells. Cell, 1991, 66, 291-304.	28.9	197
305	Octamania: The POU factors in murine development. Trends in Genetics, 1991, 7, 323-329.	6.7	337
306	New type of POU domain in germ line-specific protein Oct-4. Nature, 1990, 344, 435-439.	27.8	718

18

#	Article	IF	CITATIONS
307	Moratorium call. Nature, 1988, 334, 560-560.	27.8	1
308	Specific interaction between enhancer-containing molecules and cellular components. Cell, 1984, 36, 403-411.	28.9	418
309	In vitro differentiation of germ cells from stem cells. , 0, , 236-249.		0
310	Oct4 differentially regulates chromatin opening and enhancer transcription in pluripotent stem cells. ELife, 0, 11, .	6.0	15