Jorge N Duarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8445595/publications.pdf Version: 2024-02-01

1040056 1058476 32 244 9 14 citations h-index g-index papers 33 33 33 289 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Homotopy analysis of explicit solutions in a chronic hepatitis C virus model. Applied Mathematical Sciences, 2021, 15, 15-32.	0.1	0
2	The role of noise in the tumor dynamics under chemotherapy treatment. European Physical Journal Plus, 2021, 136, 1.	2.6	4
3	Controlling Infectious Diseases: The Decisive Phase Effect on a Seasonal Vaccination Strategy. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	1.7	3
4	Chaos analysis and explicit series solutions to the seasonally forced SIR epidemic model. Journal of Mathematical Biology, 2019, 78, 2235-2258.	1.9	15
5	Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells. Numerical Algorithms, 2018, 77, 261-288.	1.9	8
6	On the Dynamical Complexity of a Seasonally Forced Discrete SIR Epidemic Model with a Constant Vaccination Strategy. Complexity, 2018, 2018, 1-11.	1.6	9
7	A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis. Mathematical Biosciences and Engineering, 2017, 14, 821-842.	1.9	3
8	Rheology of the cytoskeleton as a fractal network. Physical Review E, 2015, 92, 040702.	2.1	7
9	Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach. Applied Mathematics and Computation, 2015, 252, 484-495.	2.2	29
10	Explicit series solution for a glucose-induced electrical activity model of pancreatic beta-cells. Chaos, Solitons and Fractals, 2015, 76, 1-9.	5.1	3
11	How Complex, Probable, and Predictable is Genetically Driven Red Queen Chaos?. Acta Biotheoretica, 2015, 63, 341-361.	1.5	3
12	On the analytical solutions of the Hindmarsh–Rose neuronal model. Nonlinear Dynamics, 2015, 82, 1221-1231.	5.2	9
13	Avoiding healthy cells extinction in a cancer model. Journal of Theoretical Biology, 2014, 349, 74-81.	1.7	21
14	Complex dynamics of defective interfering baculoviruses during serial passage in insect cells. Journal of Biological Physics, 2013, 39, 327-342.	1.5	15
15	TOPOLOGICAL COMPLEXITY AND PREDICTABILITY IN THE DYNAMICS OF A TUMOR GROWTH MODEL WITH SHILNIKOV'S CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350124.	1.7	12
16	Topological entropy of catalytic sets: Hypercycles revisited. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 795-803.	3.3	2
17	On chaos, transient chaos and ghosts in single population models with Allee effects. Nonlinear Analysis: Real World Applications, 2012, 13, 1647-1661.	1.7	16
18	Scaling law in saddle-node bifurcations for one-dimensional maps: a complex variable approach. Nonlinear Dynamics, 2012, 67, 541-547.	5.2	15

JORGE N DUARTE

#	Article	IF	CITATIONS
19	Quantifying chaos for ecological stoichiometry. Chaos, 2010, 20, 033105.	2.5	2
20	Chaos and crises in a model for cooperative hunting: A symbolic dynamics approach. Chaos, 2009, 19, 043102.	2.5	27
21	MEASURING AND CONTROLLING THE CHAOTIC MOTION OF PROFITS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 3593-3604.	1.7	2
22	Measuring complexity in a business cycle model of the Kaldor type. Chaos, Solitons and Fractals, 2009, 42, 2890-2903.	5.1	8
23	Reciprocal inhibitory coupling: Measure and control of chaos on a biophysically motivated model of hursting, Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2734-2746. Topological entropy and the controlled effect of glucose in the electrical activity of pancreatic <mml:math <="" altimg="si54.gif" display="inline" overflow="scroll" td=""><td>3.3</td><td>2</td></mml:math>	3.3	2
24	<pre><mml:math <br="" altimg="si54.gif" display="inline" overflow="scroll">xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="h. Physica D: Nonlinear</mml:math></pre>	2.8	4
25	Phenome Chaos In Ecology: The Topological Entropy of a Tritrophic Food Chain Model. Discrete Dynamics in Nature and Society, 2008, 2008, 1-12.	0.9	1
26	Topological invariants in the study of a chaotic food chain system. Chaos, 2008, 18, 023109.	2.5	4
27	Computation of the topological entropy in chaotic biophysical bursting models for excitable cells. Discrete Dynamics in Nature and Society, 2006, 2006, 1-18.	0.9	1
28	The influence of coupling on chaotic maps modelling bursting cells. Chaos, Solitons and Fractals, 2006, 28, 1314-1326.	5.1	5
29	Types of Bifurcations of FitzHugh–Nagumo Maps. Nonlinear Dynamics, 2006, 44, 231-242.	5.2	6
30	Topological invariants in forced piecewise-linear FitzHugh–Nagumo-like systems. Chaos, Solitons and Fractals, 2005, 23, 1553-1565.	5.1	2
31	Symbolic dynamics in the study of bursting electrical activity. , 2005, , .		2
32	Analytical solutions of an economic model by the homotopy analysis method. Applied Mathematical Sciences, 0, 10, 2483-2490.	0.1	4