Xiuli Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8445486/publications.pdf

Version: 2024-02-01

136950 149698 4,348 56 32 56 citations h-index g-index papers 57 57 57 6909 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 2014, 185, 12-21.	9.9	995
2	In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Science Translational Medicine, 2018, 10, .	12.4	439
3	Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules, 2017, 18, 649-673.	5.4	316
4	Light-Activatable Red Blood Cell Membrane-Camouflaged Dimeric Prodrug Nanoparticles for Synergistic Photodynamic/Chemotherapy. ACS Nano, 2018, 12, 1630-1641.	14.6	300
5	H ₂ O ₂ -Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery. ACS Nano, 2017, 11, 613-620.	14.6	255
6	Biodegradable Block Copolymer-Doxorubicin Conjugates via Different Linkages: Preparation, Characterization, and In Vitro Evaluation. Biomacromolecules, 2010, 11, 2094-2102.	5.4	148
7	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie - International Edition, 2017, 56, 2588-2593.	13.8	124
8	Biodegradable amphiphilic polymer–drug conjugate micelles. Expert Opinion on Drug Delivery, 2009, 6, 1079-1090.	5.0	123
9	Redox-Hypersensitive Organic Nanoparticles for Selective Treatment of Cancer Cells. Chemistry of Materials, 2016, 28, 4440-4446.	6.7	101
10	Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. Journal of Controlled Release, 2017, 254, 23-33.	9.9	101
11	A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angewandte Chemie - International Edition, 2020, 59, 23198-23205.	13.8	94
12	Biodegradable Amphiphilic Block Copolymers Bearing Protected Hydroxyl Groups: Synthesis and Characterization. Biomacromolecules, 2008, 9, 553-560.	5.4	73
13	Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. Journal of Polymer Science Part A, 2007, 45, 3204-3217.	2.3	69
14	Mitochondria-Targeting Organic Nanoparticles for Enhanced Photodynamic/Photothermal Therapy. ACS Applied Materials & District Samp; Interfaces, 2020, 12, 30077-30084.	8.0	66
15	Photo-cross-linked mPEG-poly(\hat{l}^3 -cinnamyl-l-glutamate) micelles as stable drug carriers. Polymer Chemistry, 2012, 3, 1300.	3.9	60
16	Synthesis and characterization of amphiphilic block copolymers with allyl sideâ€groups. Journal of Polymer Science Part A, 2007, 45, 5518-5528.	2.3	57
17	Targeting and anti-tumor effect of folic acid-labeled polymer–Doxorubicin conjugates with pH-sensitive hydrazone linker. Journal of Materials Chemistry, 2012, 22, 13303.	6.7	51
18	Novel aliphatic poly(esterâ€carbonate) with pendant allyl ester groups and its folic acid functionalization. Journal of Polymer Science Part A, 2008, 46, 1852-1861.	2.3	49

#	Article	IF	CITATIONS
19	Aliphatic poly(esterâ€carbonate)s bearing amino groups and its RGD peptide grafting. Journal of Polymer Science Part A, 2008, 46, 7022-7032.	2.3	47
20	Core Crosslinking of Biodegradable Block Copolymer Micelles Based on Poly(ester carbonate). Macromolecular Bioscience, 2009, 9, 456-463.	4.1	47
21	Hybrid polymer micelles capable of cRGD targeting and pH-triggered surface charge conversion for tumor selective accumulation and promoted uptake. Chemical Communications, 2014, 50, 9188-9191.	4.1	46
22	Engineering pH-Responsive BODIPY Nanoparticles for Tumor Selective Multimodal Imaging and Phototherapy. ACS Applied Materials & Interfaces, 2019, 11, 43928-43935.	8.0	43
23	Small molecular nanomedicines made from a camptothecin dimer containing a disulfide bond. RSC Advances, 2015, 5, 81499-81501.	3.6	40
24	Cyanine-Curcumin Assembling Nanoparticles for Near-Infrared Imaging and Photothermal Therapy. ACS Biomaterials Science and Engineering, 2016, 2, 1942-1950.	5.2	40
25	Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy. Nano Research, 2019, 12, 877-887.	10.4	38
26	Hypoxia-Sensitive Materials for Biomedical Applications. Annals of Biomedical Engineering, 2016, 44, 1931-1945.	2.5	37
27	Photothermal-Controlled Generation of Alkyl Radical from Organic Nanoparticles for Tumor Treatment. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5782-5790.	8.0	37
28	Microneedle Array Patches Integrated with Nanoparticles for Therapy and Diagnosis. Small Structures, 2021, 2, 2000097.	12.0	37
29	Cinnamateâ€functionalized poly(esterâ€carbonate): Synthesis and its UV irradiationâ€induced photoâ€crosslinking. Journal of Polymer Science Part A, 2009, 47, 161-169.	2.3	36
30	Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol. Journal of Polymer Science Part A, 2007, 45, 1737-1745.	2.3	35
31	Cyclodextrin/Paclitaxel Dimer Assembling Vesicles: Reversible Morphology Transition and Cargo Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26740-26748.	8.0	35
32	Glutathione-responsive paclitaxel dimer nanovesicles with high drug content. Biomaterials Science, 2017, 5, 1517-1521.	5.4	34
33	Rational Design of BODIPY-Diketopyrrolopyrrole Conjugated Polymers for Photothermal Tumor Ablation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32720-32728.	8.0	28
34	Comparison of Redox Responsiveness and Antitumor Capability of Paclitaxel Dimeric Nanoparticles with Different Linkers. Chemistry of Materials, 2020, 32, 10719-10727.	6.7	28
35	A biodegradable diblcok copolymer poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 Td (glycol)ê Docetaxel and RGD conjugation. Journal of Applied Polymer Science, 2008, 110, 2961-2970.	i€ <i>block 2.6</i>	â€poly(25
36	Anti-tumor activity of folate targeted biodegradable polymer–paclitaxel conjugate micelles on EMT-6 breast cancer model. Materials Science and Engineering C, 2015, 53, 68-75.	7.3	25

#	Article	IF	CITATIONS
37	Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy. RSC Advances, 2014, 4, 38405-38411.	3.6	24
38	Redox responsive paclitaxel dimer for programmed drug release and selectively killing cancer cells. Journal of Colloid and Interface Science, 2020, 580, 785-793.	9.4	24
39	Application of microwaveâ€assisted click chemistry in the preparation of functionalized copolymers for drug conjugation. Journal of Applied Polymer Science, 2013, 127, 3365-3373.	2.6	20
40	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie, 2017, 129, 2632-2637.	2.0	20
41	Guanidinated amphiphilic cationic copolymer with enhanced gene delivery efficiency. Journal of Materials Chemistry, 2012, 22, 18915.	6.7	19
42	Cyclic RGD targeting nanoparticles with pH sensitive polymer–drug conjugates for effective treatment of melanoma. RSC Advances, 2014, 4, 55187-55194.	3.6	19
43	BODIPY derivatives as light-induced free radical generators for hypoxic cancer treatment. Journal of Materials Chemistry B, 2019, 7, 3976-3981.	5.8	19
44	A Novel Biodegradable and Lightâ€Breakable Diblock Copolymer Micelle for Drug Delivery. Advanced Engineering Materials, 2009, 11, B7.	3.5	16
45	Co-delivery of all-trans-retinoic-acid and cisplatin(iv) prodrug based on polymer–drug conjugates for enhanced efficacy and safety. Journal of Materials Chemistry, 2012, 22, 25453.	6.7	15
46	cRGD targeted and charge conversion-controlled release micelles for doxorubicin delivery. RSC Advances, 2015, 5, 22957-22964.	3.6	15
47	Cyclic RGD targeting cisplatin micelles for near-infrared imaging-guided chemotherapy. RSC Advances, 2016, 6, 1151-1157.	3. 6	13
48	Redox-activity of polydopamine for ultrafast preparation of self-healing and adhesive hydrogels. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112469.	5.0	12
49	A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angewandte Chemie, 2020, 132, 23398-23405.	2.0	10
50	EGFPâ€Based Protein Nanoparticles with Cellâ€Penetrating Peptide for Efficient siRNA Delivery. Macromolecular Bioscience, 2015, 15, 1484-1489.	4.1	9
51	Complex of cisplatin with biocompatible poly(ethylene glycol) with pendant carboxyl groups for the effective treatment of liver cancer. Journal of Applied Polymer Science, 2014, 131, n/a-n/a.	2.6	7
52	Y-shaped block copolymer (methoxy-poly(ethylene glycol))2-b-poly(l-glutamic acid): preparation, self-assembly, and use as drug carriers. RSC Advances, 2014, 4, 41588-41596.	3.6	7
53	Cascaded amplification of intracellular oxidative stress and reversion of multidrug resistance by nitric oxide prodrug based-supramolecular hydrogel for synergistic cancer chemotherapy. Bioactive Materials, 2021, 6, 3300-3313.	15.6	7
54	Self-assembled organic nanorods for dual chemo-photodynamic therapies. RSC Advances, 2018, 8, 5493-5499.	3.6	6

XıuLı Hu

#	Article	IF	CITATIONS
55	Studies on the biological character of a new pH-sensitive doxorubicin prodrug with tumor targeting using a LC-MS/MS method. Analytical Methods, 2014, 6, 3159.	2.7	4
56	Innentitelbild: Anaerobeâ€Inspired Anticancer Nanovesicles (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2558-2558.	2.0	3