Delphine Moreau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8445447/publications.pdf Version: 2024-02-01

		394286	289141
42	1,813	19	40
papers	citations	h-index	g-index
43	43	43	2240
all docs	docs citations	times ranked	citing authors

DEIDHINE MODEAIL

#	Article	IF	CITATIONS
1	Morphological response of weed and crop species to nitrogen stress in interaction with shading. Weed Research, 2022, 62, 160-171.	0.8	5
2	Tracking Ideal Varieties and Cropping Techniques for Agroecological Weed Management: A Simulation-Based Study on Pea. Frontiers in Plant Science, 2022, 13, 809056.	1.7	1
3	Weed suppression in cover crop mixtures under contrasted levels of resource availability. European Journal of Agronomy, 2022, 136, 126499.	1.9	7
4	Deciphering field-based evidences for crop allelopathy in weed regulation. A review. Agronomy for Sustainable Development, 2022, 42, .	2.2	16
5	The FLORSYS crop-weed canopy model, a tool to investigate and promote agroecological weed management. Field Crops Research, 2021, 261, 108006.	2.3	34
6	Individual-based 3D modelling of root systems in heterogeneous plant canopies at the multiannual scale. Case study with a weed dynamics model. Ecological Modelling, 2021, 440, 109376.	1.2	9
7	Plant nitrogen nutrition status in intercrops– a review of concepts and methods. European Journal of Agronomy, 2021, 124, 126229.	1.9	19
8	Integrating plant-plant competition for nitrogen into a 3D individual-based model simulating the effects of cropping systems on weed dynamics. Field Crops Research, 2021, 268, 108166.	2.3	8
9	Designing a model to investigate cropping systems aiming to control both parasitic plants and weeds. European Journal of Agronomy, 2021, 129, 126318.	1.9	3
10	How to pit weeds against parasitic plants. A simulation study with Phelipanche ramosa in arable cropping systems. European Journal of Agronomy, 2021, 130, 126368.	1.9	2
11	A dataset on above- and below-ground traits of 21 species found in banana cropping systems, cultivated individually. Data in Brief, 2020, 31, 105890.	0.5	0
12	The response of weed and crop species to shading. How to predict their morphology and plasticity from species traits and ecological indexes?. European Journal of Agronomy, 2020, 121, 126158.	1.9	9
13	Quantifying the nitrogen demand of individual plants in heterogeneous canopies: A case study with crop and weed species. European Journal of Agronomy, 2020, 119, 126102.	1.9	10
14	Role of ley pastures in tomorrow's cropping systems. A review. Agronomy for Sustainable Development, 2020, 40, 1.	2.2	63
15	In which cropping systems can residual weeds reduce nitrate leaching and soil erosion?. European Journal of Agronomy, 2020, 119, 126015.	1.9	14
16	Metamodelling a 3D architectural root-system model to provide a simple model based on key processes and species functional groups. Plant and Soil, 2020, 448, 231-251.	1.8	11
17	The response of weed and crop species to shading: Which parameters explain weed impacts on crop production?. Field Crops Research, 2019, 238, 45-55.	2.3	33
18	A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 2019, 33, 540-552.	1.7	292

Delphine Moreau

#	Article	IF	CITATIONS
19	Effects of species and soilâ€nitrogen availability on root system architecture traits – study on a set of weed and crop species. Annals of Applied Biology, 2017, 171, 103-116.	1.3	15
20	Response and effect traits of arable weeds in agroâ€ecosystems: a review of current knowledge. Weed Research, 2017, 57, 123-147.	0.8	95
21	Assessing broomrape risk due to weeds in cropping systems with an indicator linked to a simulation model. Ecological Indicators, 2017, 82, 280-292.	2.6	11
22	Positive effects of plant association on rhizosphere microbial communities depend on plant species involved and soil nitrogen level. Soil Biology and Biochemistry, 2017, 114, 1-4.	4.2	28
23	Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species. PLoS ONE, 2017, 12, e0173066.	1.1	13
24	Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate. Frontiers in Plant Science, 2016, 7, 1033.	1.7	6
25	RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods, 2016, 12, 31.	1.9	76
26	Plant traits related to nitrogen uptake influence plantâ€microbe competition. Ecology, 2015, 96, 2300-2310.	1.5	114
27	Trait-based characterisation of cover plants' light competition strategies for weed control in banana cropping systems in the French West Indies. European Journal of Agronomy, 2015, 71, 10-18.	1.9	33
28	Calibration and evaluation of ArchiSimple, a simple model of root system architecture. Ecological Modelling, 2014, 290, 76-84.	1.2	81
29	The ecophysiological determinants of nitrophily in annual weed species. Weed Research, 2014, 54, 335-346.	0.8	29
30	Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 2014, 155, 213-223.	2.3	244
31	A plant nitrophily index based on plant leaf area response to soil nitrogen availability. Agronomy for Sustainable Development, 2013, 33, 809-815.	2.2	37
32	How to hierarchize the main physiological processes responsible for phenotypic differences in large-scale screening studies?. Plant Signaling and Behavior, 2012, 7, 311-313.	1.2	1
33	ArchiSimple: A parsimonious model of the root system architecture. , 2012, , .		9
34	Acclimation of Leaf Nitrogen to Vertical Light Gradient at Anthesis in Wheat Is a Whole-Plant Process That Scales with the Size of the Canopy Â. Plant Physiology, 2012, 160, 1479-1490.	2.3	54
35	What are the traits of Phelipanche ramosa (L.) Pomel that contribute to the success of its biological cycle on its host Brassica napus L.?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 512-521.	0.6	31
36	Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula. Theoretical and Applied Genetics, 2012, 124, 755-768.	1.8	20

DELPHINE MOREAU

#	Article	IF	CITATIONS
37	Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research, 2011, 123, 139-152.	2.3	243
38	Can differences of nitrogen nutrition level among <i>Medicago truncatula</i> genotypes be assessed non-destructively? Probing with a recombinant inbred lines population. Plant Signaling and Behavior, 2009, 4, 30-32.	1.2	9
39	Analysis and modeling of the integrative response of Medicago truncatula to nitrogen constraints. Comptes Rendus - Biologies, 2009, 332, 1022-1033.	0.1	12
40	The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain 2011 leads to N-stressed plants when symbiotic N2 fixation is the main N source for plant growth. Journal of Experimental Botany, 2008, 59, 3509-3522.	2.4	60
41	A model-based framework for the phenotypic characterization of the flowering of Medicago truncatula. Plant, Cell and Environment, 2007, 30, 213-224.	2.8	18
42	Using a standard framework for the phenotypic analysis of Medicago truncatula: an effective method for characterizing the plant material used for functional genomics approaches. Plant, Cell and Environment, 2006, 29, 1087-1098.	2.8	25