Elena Barbaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8444856/publications.pdf

Version: 2024-02-01

65 papers

1,517 citations

304602 22 h-index 36 g-index

77 all docs

77 docs citations

77 times ranked 2007 citing authors

#	Article	IF	CITATIONS
1	Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core. Climate of the Past, 2014, 10, 1905-1924.	1.3	99
2	Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy. Atmospheric Environment, 2016, 139, 1-10.	1.9	91
3	SARS-CoV-2 concentrations and virus-laden aerosol size distributions in outdoor air in north and south of Italy. Environment International, 2021, 146, 106255.	4.8	82
4	Amino acids in Arctic aerosols. Atmospheric Chemistry and Physics, 2012, 12, 10453-10463.	1.9	72
5	Atmospheric impact of ship traffic in four Adriatic-Ionian port-cities: Comparison and harmonization of different approaches. Transportation Research, Part D: Transport and Environment, 2017, 50, 431-445.	3.2	71
6	Free amino acids in atmospheric particulate matter of Venice, Italy. Atmospheric Environment, 2011, 45, 5050-5057.	1.9	67
7	Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol. Atmospheric Chemistry and Physics, 2015, 15, 5457-5469.	1.9	54
8	Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air. Environmental Science and Pollution Research, 2016, 23, 6951-6959.	2.7	49
9	Sugars in Antarctic aerosol. Atmospheric Environment, 2015, 118, 135-144.	1.9	47
10	Fragrances and PAHs in snow and seawater of Ny-Ãlesund (Svalbard): Local and long-range contamination. Environmental Pollution, 2018, 242, 1740-1747.	3.7	46
11	Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols. Science of the Total Environment, 2016, 544, 606-616.	3.9	45
12	d- and l-amino acids in Antarctic lakes: assessment of a very sensitive HPLC-MS method. Analytical and Bioanalytical Chemistry, 2014, 406, 5259-5270.	1.9	37
13	Five primary sources of organic aerosols in the urban atmosphere of Belgrade (Serbia). Science of the Total Environment, 2016, 571, 1441-1453.	3.9	36
14	Molecular Markers of Biomass Burning in Arctic Aerosols. Environmental Science & Emp; Technology, 2013, 47, 130716103911002.	4.6	35
15	Characterization of the water soluble fraction in ultrafine, fine, and coarse atmospheric aerosol. Science of the Total Environment, 2019, 658, 1423-1439.	3.9	35
16	Fragrances as new contaminants in the Venice lagoon. Science of the Total Environment, 2016, 566-567, 1362-1367.	3.9	33
17	Fragrances in the seawater of Terra Nova Bay, Antarctica. Science of the Total Environment, 2017, 593-594, 375-379.	3.9	32
18	Interannual variability of sugars in Arctic aerosol: Biomass burning and biogenic inputs. Science of the Total Environment, 2020, 706, 136089.	3.9	30

#	Article	IF	CITATIONS
19	Carbohydrate determination in honey samples by ion chromatography–mass spectrometry (HPAEC-MS). Analytical and Bioanalytical Chemistry, 2020, 412, 5217-5227.	1.9	30
20	Simultaneous quantification of microcystins and nodularin in aerosol samples using highâ€performance liquid chromatography/negative electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 1497-1506.	0.7	28
21	Particle size distribution of inorganic and organic ions in coastal and inland Antarctic aerosol. Environmental Science and Pollution Research, 2017, 24, 2724-2733.	2.7	27
22	Free and combined L- and D-amino acids in Arctic aerosol. Chemosphere, 2019, 220, 412-421.	4.2	23
23	Photo-oxidation products of α-pinene in coarse, fine and ultrafine aerosol: A new high sensitive HPLC-MS/MS method. Atmospheric Environment, 2018, 180, 149-155.	1.9	22
24	Inter-comparison of carbon content in PM10 and PM2.5 measured with two thermo-optical protocols on samples collected in a Mediterranean site. Environmental Science and Pollution Research, 2019, 26, 29334-29350.	2.7	22
25	Investigation on the Sources and Impact of Trace Elements in the Annual Snowpack and the Firn in the Hansbreen (Southwest Spitsbergen). Frontiers in Earth Science, 2021, 8, .	0.8	22
26	Quantitative determination by screening ELISA and HPLC-MS/MS of microcystins LR, LY, LA, YR, RR, LF, LW, and nodularin in the water of Occhito lake and crops. Analytical and Bioanalytical Chemistry, 2016, 408, 7699-7708.	1.9	21
27	An integrated study of the chemical composition of Antarctic aerosol to investigate natural and anthropogenic sources. Environmental Chemistry, 2016, 13, 867.	0.7	21
28	Free amino acids in the Arctic snow and ice core samples: Potential markers for paleoclimatic studies. Science of the Total Environment, 2017, 607-608, 454-462.	3.9	21
29	Levels and spatial distributions of levoglucosan and dissolved organic carbon in snowpits over the Tibetan Plateau glaciers. Science of the Total Environment, 2018, 612, 1340-1347.	3.9	20
30	High-latitude Southern Hemisphere fire history during the mid- to late Holocene (6000–750 BP). Climate of the Past, 2018, 14, 871-886.	1.3	18
31	Domoic acid at trace levels in lagoon waters: assessment of a method using internal standard quantification. Analytical and Bioanalytical Chemistry, 2013, 405, 9113-9123.	1.9	17
32	Aerosol and snow transfer processes: An investigation on the behavior of water-soluble organic compounds and ionic species. Chemosphere, 2017, 183, 132-138.	4.2	17
33	Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow. Atmospheric Chemistry and Physics, 2019, 19, 13325-13339.	1.9	17
34	Chemical characterization and source apportionment of size-segregated aerosol in the port-city of Venice (Italy). Atmospheric Pollution Research, 2021, 12, 261-271.	1.8	16
35	Col Margherita Observatory: A background site in the Eastern Italian Alps for investigating the chemical composition of atmospheric aerosols. Atmospheric Environment, 2020, 221, 117071.	1.9	15
36	An inter-comparison of size segregated carbonaceous aerosol collected by low-volume impactor in the port-cities of Venice (Italy) and Rijeka (Croatia). Atmospheric Pollution Research, 2020, 11, 1705-1714.	1.8	13

#	Article	IF	Citations
37	Year-round measurements of size-segregated low molecular weight organic acids in Arctic aerosol. Science of the Total Environment, 2021, 763, 142954.	3.9	13
38	Water-soluble trace, rare earth elements and organic compounds in Arctic aerosol. Rendiconti Lincei, 2016, 27, 95-103.	1.0	12
39	Airborne bacteria and particulate chemistry capture Phytoplankton bloom dynamics in an Arctic fjord. Atmospheric Environment, 2021, 256, 118458.	1.9	11
40	Airborne polar pesticides in rural and mountain sites of North-Eastern Italy: An emerging air quality issue. Environmental Pollution, 2022, 308, 119657.	3.7	11
41	A broad mercury resistant strain of Pseudomonas putida secretes pyoverdine under limited iron conditions and high mercury concentrations. BioMetals, 2016, 29, 1097-1106.	1.8	10
42	Evolution of the Svalbard annual snow layer during the melting phase. Rendiconti Lincei, 2016, 27, 147-154.	1.0	10
43	Free phenolic compounds in waters of the Ross Sea. Science of the Total Environment, 2019, 650, 2117-2128.	3.9	10
44	Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016Âsnow accumulation season. Atmospheric Chemistry and Physics, 2021, 21, 3163-3180.	1.9	10
45	Determination of black carbon and nanoparticles along glaciers in the Spitsbergen (Svalbard) region exploiting a mobile platform. Atmospheric Environment, 2017, 170, 184-196.	1.9	8
46	Multiphase Hydrogenation of <scp>d</scp> -Glucosamine Hydrochloride, N-Acetyl- <scp>d</scp> -Glucosamine, <scp>d</scp> -Glucose, and <scp>d</scp> -Maltose over Ru/C with Integrated Catalyst Recovery. ACS Sustainable Chemistry and Engineering, 2022, 10, 2844-2858.	3.2	8
47	Fast and Sensitive Method for Determination of Domoic Acid in Mussel Tissue. Scientific World Journal, The, 2016, 2016, 1-6.	0.8	7
48	Results of an interlaboratory comparison of analytical methods for quantification of anhydrosugars and biosugars in atmospheric aerosol. Chemosphere, 2017, 184, 269-277.	4.2	7
49	Dissolved rare earth elements in the central-western sector of the Ross Sea, Southern Ocean: Geochemical tracing of seawater masses. Chemosphere, 2017, 183, 444-453.	4.2	7
50	Source, timing and dynamics of ionic species mobility in the Svalbard annual snowpack. Science of the Total Environment, 2021, 751, 141640.	3.9	6
51	First discrete iron(II) records from Dome C (Antarctica) and the Holtedahlfonna glacier (Svalbard). Chemosphere, 2021, 267, 129335.	4.2	6
52	Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018. Atmospheric Chemistry and Physics, 2021, 21, 3035-3057.	1.9	6
53	Antarctic ozone hole modifies iodine geochemistry on the Antarctic Plateau. Nature Communications, 2021, 12, 5836.	5.8	6

Characterization of atmospheric total gaseous mercury at a remote high-elevation site (Col) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td

#	Article	IF	CITATIONS
55	Factors controlling atmospheric DMS and its oxidation products (MSA and) Tj ETQq1 1 0.784314 rgBT /Overlock Chemistry and Physics, 2022, 22, 9245-9263.	10 Tf 50 1.9	747 Td (nssS 6
56	Acrylamide determination in atmospheric particulate matter by high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry. International Journal of Environmental Analytical Chemistry, 2012, 92, 1150-1160.	1.8	5
57	Dissolved organic matter in the deep TALDICE ice core: A nano-UPLC-nano-ESI-HRMS method. Science of the Total Environment, 2020, 700, 134432.	3.9	3
58	A Year-Round Measurement of Water-Soluble Trace and Rare Earth Elements in Arctic Aerosol: Possible Inorganic Tracers of Specific Events. Atmosphere, 2021, 12, 694.	1.0	3
59	Five thousand years of fire history in the high North Atlantic region: natural variability and ancient human forcing. Climate of the Past, 2021, 17, 1533-1545.	1.3	3
60	Variability in black carbon mass concentration in surface snow at Svalbard. Atmospheric Chemistry and Physics, 2021, 21, 12479-12493.	1.9	3
61	Fast Liquid Chromatography Coupled with Tandem Mass Spectrometry for the Analysis of Vanillic and Syringic Acids in Ice Cores. Analytical Chemistry, 2022, 94, 5344-5351.	3.2	3
62	Carbonaceous Aerosol in Polar Areas: First Results and Improvements of the Sampling Strategies. Atmosphere, 2021, 12, 320.	1.0	2
63	Detection of glyphosate residues in feed, saliva, urine and faeces from a cattle farm: a pilot study. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2022, 39, 1248-1254.	1.1	2
64	Spatial distribution and potential sources of methanesulfonic acid in High Asia glaciers. Atmospheric Research, 2021, 248, 105227.	1.8	1
65	Measurements of SARS-CoV-2 RNA Concentrations in Indoor and Outdoor Air in Italy: Implications for the Role of Airborne Transmission. Environmental Sciences Proceedings, 2021, 8, 29.	0.3	0