
Antonio J Salazar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8444613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Three Pneumothorax Size Quantification Methods on Digitized Chest X-ray Films Using Medical-Grade Grayscale and Consumer-Grade Color Displays. Journal of Digital Imaging, 2014, 27, 280-286.	1.6	18
2	Comparison Between Differently Priced Devices for Digital Capture of X-Ray Films Using Computed Tomography as a Gold Standard: A Multireader-Multicase Receiver Operating Characteristic Curve Study. Telemedicine Journal and E-Health, 2011, 17, 275-282.	1.6	13
3	DICOM Gray-Scale Standard Display Function: Clinical Diagnostic Accuracy of Chest Radiography in Medical-Grade Gray-Scale and Consumer-Grade Color Displays. American Journal of Roentgenology, 2014, 202, 1272-1280.	1.0	12
4	Comparison between Different Cost Devices for Digital Capture of X-ray Films: An Image Characteristics Detection Approach. Journal of Digital Imaging, 2012, 25, 91-100.	1.6	9
5	Agreement and reading time for differently-priced devices for the digital capture of X-ray films. Journal of Telemedicine and Telecare, 2012, 18, 82-85.	1.4	6
6	Evaluation of the Accuracy Equivalence of Head CT Interpretations in Acute Stroke Patients Using a Smartphone, a Laptop, or a Medical Workstation. Journal of the American College of Radiology, 2019, 16, 1561-1571.	0.9	6
7	Noninferiority and Equivalence Evaluation of Clinical Performance among Computed Radiography, Film, and Digitized Film for Telemammography Services. International Journal of Telemedicine and Applications, 2016, 2016, 1-12.	1.1	4
8	Reliability of the BI-RADS Final Assessment Categories and Management Recommendations inÂa Telemammography Context. Journal of the American College of Radiology, 2017, 14, 686-692.e2.	0.9	4
9	Reliability and accuracy of individual Alberta Stroke Program Early CT Score regions using a medical and a smartphone reading system in a telestroke network. Journal of Telemedicine and Telecare, 2021, 27, 436-443.	1.4	4
10	Disponibilidad de servicios de mamografÃa en Colombia. Revista Colombiana De CancerologÃa, 2014, 18, 101-108.	0.0	3
11	Evaluation of Low-Cost Telemammography Screening Configurations: A Comparison with Film-Screen Readings in Vulnerable Areas. Journal of Digital Imaging, 2014, 27, 679-686.	1.6	3
12	Ruling Out Brain CT Contraindications prior to Intravenous Thrombolysis: Diagnostic Equivalence between a Primary Interpretation Workstation and a Mobile Tablet Computer. International Journal of Telemedicine and Applications, 2017, 2017, 1-7.	1.1	3
13	Comprehensive Telestroke Network to Optimize Health Care Delivery for Cerebrovascular Diseases: Algorithm Development. Journal of Medical Internet Research, 2020, 22, e18058.	2.1	3
14	Effects of the DICOM grayscale standard display function on the accuracy of medical-grade grayscale and consumer-grade color displays for telemammography screening. Proceedings of SPIE, 2013, , .	0.8	2
15	Diagnostic Accuracy of Digitized Chest X-Rays Using Consumer-Grade Color Displays for Low-Cost Teleradiology Services: A Multireader–Multicase Comparison. Telemedicine Journal and E-Health, 2014, 20, 304-311.	1.6	2
16	A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array. , 2015, , .		2
17	Accuracy and Reliability of the Recommendation for IV Thrombolysis in Acute Ischemic Stroke Based on Interpretation of Head CT on a Smartphone or a Laptop. American Journal of Roentgenology, 2020, 214, 877-884.	1.0	2
18	Mobile device for thrombolysis decisions for telestroke. Colombia Medica, 2018, 49, 254-260.	0.7	2

0

#	Article	IF	CITATIONS
19	A low cost image transfer system for small medical centers. , 1992, , .		1

20 A Low Cost Image Transfer System For Small Medical Centers. , 1992, , .