Guang-Ho Cha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8444585/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration. PLoS Genetics, 2007, 3, e82.	3.5	368
2	Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proceedings of the United States of America, 2005, 102, 10345-10350.	7.1	227
3	Host Cell Autophagy Activated by Antibiotics Is Required for Their Effective Antimycobacterial Drug Action. Cell Host and Microbe, 2012, 11, 457-468.	11.0	219
4	Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene, 2005, 361, 133-139.	2.2	206
5	Suppression of Neurodegeneration and Increased Neurotransmission Caused by Expanded Full-Length Huntingtin Accumulating in the Cytoplasm. Neuron, 2008, 57, 27-40.	8.1	143
6	Discrete Functions of TRAF1 and TRAF2 in Drosophila melanogaster Mediated by c-Jun N-Terminal Kinase and NF-κB-Dependent Signaling Pathways. Molecular and Cellular Biology, 2003, 23, 7982-7991.	2.3	103
7	Seroprevalence of Toxoplasma gondii Infection and Characteristics of Seropositive Patients in General Hospitals in Daejeon, Korea. Korean Journal of Parasitology, 2009, 47, 125.	1.3	77
8	Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis. Experimental Parasitology, 2013, 133, 462-471.	1.2	59
9	Toxoplasma gondii Proliferation Require Down-Regulation of Host Nox4 Expression via Activation of PI3 Kinase/Akt Signaling Pathway. PLoS ONE, 2013, 8, e66306.	2.5	58
10	Induction of Protective Immune Responses by a Multiantigenic DNA Vaccine Encoding GRA7 and ROP1 of Toxoplasma gondii. Vaccine Journal, 2012, 19, 666-674.	3.1	44
11	MKP-3 Has Essential Roles as a Negative Regulator of the Ras/Mitogen-Activated Protein Kinase Pathway during Drosophila Development. Molecular and Cellular Biology, 2004, 24, 573-583.	2.3	40
12	NADPH oxidase 4 is required for the generation of macrophage migration inhibitory factor and host defense against Toxoplasma gondii infection. Scientific Reports, 2017, 7, 6361.	3.3	35
13	Drosophila PDZ-GEF, a Guanine Nucleotide Exchange Factor for Rap1 GTPase, Reveals a Novel Upstream Regulatory Mechanism in the Mitogen-Activated Protein Kinase Signaling Pathway. Molecular and Cellular Biology, 2002, 22, 7658-7666.	2.3	34
14	Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells. PLoS ONE, 2015, 10, e0141550.	2.5	34
15	Production of IL-1Î ² and Inflammasome with Up-Regulated Expressions of NOD-Like Receptor Related Genes in Toxoplasma gondii-Infected THP-1 Macrophages. Korean Journal of Parasitology, 2016, 54, 711-717.	1.3	31
16	Autophagy Modulators and Neuroinflammation. Current Medicinal Chemistry, 2020, 27, 955-982.	2.4	29
17	Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway. Scientific Reports, 2017, 7, 3431.	3.3	28
18	Toxoplasma gondii infection inhibits the mitochondrial apoptosis through induction of Bcl-2 and HSP70. Parasitology Research, 2010, 107, 1313-1321.	1.6	26

GUANG-HO CHA

#	Article	IF	CITATIONS
19	Proteomic Analysis of <i>Toxoplasma gondii</i> KI-1 Tachyzoites. Korean Journal of Parasitology, 2010, 48, 195.	1.3	26
20	<i>Toxoplasma gondii</i> protects against H ₂ O ₂ â€induced apoptosis in ARPEâ€19 cells through the transcriptional regulation of apoptotic elements and downregulation of the p38 MAPK pathway. Acta Ophthalmologica, 2011, 89, e350-6.	1.1	23
21	<p>Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation</p> . International Journal of Nanomedicine, 2020, Volume 15, 3695-3716.	6.7	22
22	Involvement of endoplasmic reticulum stress response and IRE1-mediated ASK1/JNK/Mcl-1 pathways in silver nanoparticle-induced apoptosis of human retinal pigment epithelial cells. Toxicology, 2020, 442, 152540.	4.2	20
23	Combining Three-Dimensional Quantitative Phase Imaging and Fluorescence Microscopy for the Study of Cell Pathophysiology. Yale Journal of Biology and Medicine, 2018, 91, 267-277.	0.2	17
24	Omega-3 Polyunsaturated Fatty Acids Prevent Toxoplasma gondii Infection by Inducing Autophagy via AMPK Activation. Nutrients, 2019, 11, 2137.	4.1	16
25	Trichonomas vaginalis Metalloproteinase Induces Apoptosis of SiHa Cells through Disrupting the Mcl-1/Bim and Bcl-xL/Bim Complexes. PLoS ONE, 2014, 9, e110659.	2.5	13
26	Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway. Korean Journal of Parasitology, 2018, 56, 135-145.	1.3	12
27	<i>Trichomonas vaginalis</i> Induces SiHa Cell Apoptosis by NF- <i>κ</i> B Inactivation via Reactive Oxygen Species. BioMed Research International, 2017, 2017, 1-10.	1.9	10
28	Fasciola hepatica: Infection Status of Freshwater Snails Collected from Gangwon-do (Province), Korea. Korean Journal of Parasitology, 2017, 55, 95-98.	1.3	10
29	Antigenemia and Specific IgM and IgG Antibody Responses in Rabbits Infected with Toxoplasma gondii. Korean Journal of Parasitology, 2009, 47, 409.	1.3	10
30	Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with <i>Trichomonas vaginalis</i> . Korean Journal of Parasitology, 2015, 53, 371-377.	1.3	10
31	Silver nanoparticles induce apoptosis via <i>NOX4</i> -derived mitochondrial reactive oxygen species and endoplasmic reticulum stress in colorectal cancer cells. Nanomedicine, 2021, 16, 1357-1375.	3.3	9
32	Fasciola hepatica in Snails Collected from Water-Dropwort Fields using PCR. Korean Journal of Parasitology, 2014, 52, 645-652.	1.3	9
33	The BTB/POZ-ZF Transcription Factor dPLZF Is Involved in Ras/ERK Signaling During Drosophila Wing Development. Molecules and Cells, 2012, 33, 457-464.	2.6	8
34	Kinetics of IL-23 and IL-12 Secretion in Response to Toxoplasma gondii Antigens from THP-1 Monocytic Cells. Korean Journal of Parasitology, 2013, 51, 85-92.	1.3	8
35	<scp>3D</scp> morphological and biophysical changes in a single tachyzoite and its infected cells using threeâ€dimensional quantitative phase imaging. Journal of Biophotonics, 2020, 13, e202000055.	2.3	7
36	VEGF Production Is Regulated by the AKT/ERK1/2 Signaling Pathway and Controls the Proliferation of Toxoplasma gondii in ARPE-19 Cells. Frontiers in Cellular and Infection Microbiology, 2020, 10, 184.	3.9	7

GUANG-HO CHA

#	Article	IF	CITATIONS
37	Genetic Diversity of <i>Schistosoma haematobium</i> Eggs Isolated from Human Urine in Sudan. Korean Journal of Parasitology, 2015, 53, 271-277.	1.3	7
38	Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in SiHa cells. Parasites and Vectors, 2021, 14, 603.	2.5	7
39	Regulation of Mst57Dc Expression in Male Accessory Glands of Dorsophila melanogaster. Molecules and Cells, 2000, 10, 180-185.	2.6	6
40	FAF1 downregulation by Toxoplasma gondii enables host IRF3 mobilization and promotes parasite growth. Journal of Cellular and Molecular Medicine, 2021, 25, 9460-9472.	3.6	6
41	Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells. Korean Journal of Parasitology, 2014, 52, 595-603.	1.3	6
42	The Role of PI3K/AKT Pathway and NADPH Oxidase 4 in Host ROS Manipulation by Toxoplasma gondii. Korean Journal of Parasitology, 2020, 58, 237-247.	1.3	4
43	Dipenyleneiodonium Induces Growth Inhibition of Toxoplasma gondii through ROS Induction in ARPE-19 Cells. Korean Journal of Parasitology, 2019, 57, 83-92.	1.3	3
44	Gene Expression Profiles in Genetically Different Mice Infected with Toxoplasma gondii: ALDH1A2, BEX2, EGR2, CCL3 and PLAU. Korean Journal of Parasitology, 2012, 50, 7-13.	1.3	3
45	The role of serine 190 in FOXO nuclear export and cell death induction in Drosophila melanogaster. Genes and Genomics, 2014, 36, 475-483.	1.4	2
46	IL-12 and IL-23 Production in Toxoplasma gondii- or LPS Treated Jurkat T Cells via PI3K and MAPK Signaling Pathways. Korean Journal of Parasitology, 2017, 55, 613-622.	1.3	2
47	Functional characterisation of the Drosophila cg6568 gene in host defence against Mycobacterium marinum. Microbes and Infection, 2017, 19, 351-357.	1.9	1
48	Adherence of Trichomonas vaginalis to SiHa Cells is Inhibited by Diphenyleneiodonium. Microorganisms, 2020, 8, 1570.	3.6	0