Takuya Ogaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8444568/publications.pdf

Version: 2024-02-01

1040056 794594 31 366 9 19 citations h-index g-index papers 39 39 39 452 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Utilization of microflow reactors to carry out synthetically useful organic photochemical reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, 107-147.	11.6	71
2	Exergonic Intramolecular Singlet Fission of an Adamantane-Linked Tetracene Dyad via Twin Quintet Multiexcitons. Journal of Physical Chemistry C, 2019, 123, 18813-18823.	3.1	39
3	"Manipulation―of Crystal Structure by Methylthiolation Enabling Ultrahigh Mobility in a Pyreneâ€Based Molecular Semiconductor. Advanced Materials, 2021, 33, e2102914.	21.0	39
4	Selenium-Substituted β-Methylthiobenzo[1,2- <i>b</i> selenium-Substituted β-Methylthiobenzo[1,2- <i>selenium-Substituted β-Methylthiobenzo[1,2-<i selenium-substituted="" td="" β-methylthiobenzo[1,2-<i="" β-methylthiobenzo[1,2-<i<=""><td>6.7</td><td>36</td></i></i>	6.7	36
5	"Disrupt and induce―intermolecular interactions to rationally design organic semiconductor crystals: from herringbone to rubrene-like pitched π-stacking. Chemical Science, 2020, 11, 1573-1580.	7.4	36
6	Remarkable Solvatofluorochromism of a [2.2]Paracyclophane ontaining Organoboron Complex: A Large Stokes Shift Promoted by Excited State Intramolecular Charge Transfer. ChemPhotoChem, 2017, 1, 188-197.	3.0	15
7	Intramolecular Triple Cyclization Strategy for Sila―and Oxaâ€Analogues of Truxene with Longâ€Lived Phosphorescence. Asian Journal of Organic Chemistry, 2017, 6, 290-296.	2.7	14
8	A Design Principle for Polar Assemblies with C ₃ â€Sym Bowlâ€Shaped Ï€â€Conjugated Molecules. Angewandte Chemie - International Edition, 2021, 60, 3261-3267.	13.8	12
9	Development and Elucidation of a Novel Fluorescent Boron-Sensor for the Analysis of Boronic Acid-Containing Compounds. Sensors, 2017, 17, 2436.	3.8	10
10	Crystal Structures of Dimethoxyanthracens: A Clue to a Rational Design of Packing Structures of Ï€â€Conjugated Molecules. Chemistry - an Asian Journal, 2020, 15, 915-919.	3.3	10
11	Elongation of Triplet Lifetime Caused by Intramolecular Energy Hopping in Diphenylanthracene Dyads Oriented to Undergo Efficient Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry B, 2021, 125, 4831-4837.	2.6	10
12	1,3,6,8-Tetrakis(methylchalcogeno)pyrenes: Effects of Chalcogen Atoms on the Crystal Structure and Transport Properties. Chemistry of Materials, 2022, 34, 6606-6616.	6.7	10
13	Triplet–Triplet Annihilation-Photon Upconversion Employing an Adamantane-linked Diphenylanthracene Dyad Strategy. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112107.	3.9	9
14	One-pot photochemical synthesis of novel thienobis [1] benzothiophene with an angularly-fused structure that promotes unique intermolecular $Sa^{-}S$ contacts in the crystalline state. Tetrahedron Letters, 2014, 55, 4269-4273.	1.4	7
15	Theoretical Study Demonstrating that Silylene Bridging Brings about LUMO Energy Lowering without Increasing the Reorganization Energy for Single Electron Transfer. Chemistry Letters, 2014, 43, 755-757.	1.3	7
16	Formation of a trithia[5]helicene in an unexpected photoreaction of a methyl-substituted bis(dithienylethenyl)thiophene through a double sequence of 6Ï€-electrocyclization/aromatization (dehydrogenation/demethylation). Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 48-55.	3.9	6
17	A leaning amine–ketone dyad with a nonconjugated linker: solvatofluorochromism and dual fluorescence associated with intramolecular charge transfer. Photochemical and Photobiological Sciences, 2018, 17, 1157-1168.	2.9	6
18	Azacalix[3]triazines: A Substructure of Triazineâ∈Based Graphitic Carbon Nitride Featuring Anionâ∈i∈ Interactions. Angewandte Chemie - International Edition, 2021, 60, 16377-16381.	13.8	6

#	Article	IF	CITATIONS
19	Cooperative effects of o - and m -methyl groups on the intramolecular charge-transfer emission properties of dibenzoylmethanatoboron difluorides. Photochemical and Photobiological Sciences, 2017, 16, 845-853.	2.9	4
20	Electronâ€Transfer Reactions Triggered by Uncharged or Cationic Photosensitizer: Methodology for Generation of o â€Quinodimethane and Analysis of Back Electronâ€Transfer Process. Asian Journal of Organic Chemistry, 2017, 6, 458-468.	2.7	4
21	A Design Principle for Polar Assemblies with C 3 â€Sym Bowlâ€Shaped Ï€â€Conjugated Molecules. Angewandte Chemie, 2021, 133, 3298-3304.	2.0	3
22	Aggregation-induced emission active thermally-activated delayed fluorescence materials possessing N-heterocycle and sulfonyl groups. Journal of Materials Chemistry C, 2022, 10, 4607-4613.	5.5	3
23	Rates of Ring Opening of Radical Cation Intermediates Govern Differences in Thermoluminescence between 1―and 2â€Naphthylâ€Substituted Methylenecyclopropanes. ChemPhotoChem, 2020, 4, 168-172.	3.0	2
24	Highly-efficient terahertz emission from hydrogen-bonded single molecular crystal 4-nitro-2,5-bis(phenylethynyl)aniline. Optics Express, 2021, 29, 10048.	3.4	2
25	Remarkable Piezofluorochromism of an Organoboron Complex Containing [2.2]Paracyclophane. Tetrahedron Letters, 2022, 101, 153913.	1.4	2
26	Spectroscopic and electrical characterization of $\hat{l}\pm,\hat{l}^3$ -bisdiphenylene- \hat{l}^2 -phenylallyl radical as an organic semiconductor. Research on Chemical Intermediates, 2018, 44, 4765-4774.	2.7	1
27	Azacalix[3]triazines: A Substructure of Triazineâ€Based Graphitic Carbon Nitride Featuring Anionâ€Ï€ Interactions. Angewandte Chemie, 2021, 133, 16513-16517.	2.0	1
28	Theoretical investigation on structure and electronic properties of Si-bridged π-conjugated systems. AIP Conference Proceedings, 2015, , .	0.4	0
29	Remarkable Solvatofluorochromism of a [2.2]Paracyclophane-Containing Organoboron Complex: A Large Stokes Shift Promoted by Excited State Intramolecular Charge Transfer. ChemPhotoChem, 2017, 1, 135-135.	3.0	0
30	Rates of Ring Opening of Radical Cation Intermediates Govern Differences in Thermoluminescence between 1â€â€and 2â€Naphthylâ€Substituted Methylenecyclopropanes. ChemPhotoChem, 2020, 4, 156-156.	3.0	0
31	Effects of the Alkyl Substituents on the Organic Thin Film Transistor Characteristics of Thiophene-fused Naphthalenes:. Journal of the Japan Society of Colour Material, 2017, 90, 233-237.	0.1	0