Anita K Mcelroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/844420/publications.pdf

Version: 2024-02-01

71 papers

5,191 citations

34 h-index 95259 68 g-index

75 all docs

75 docs citations

75 times ranked 9156 citing authors

#	Article	IF	CITATIONS
1	SARS-CoV-2 Antibody Response Is Associated with Age and Body Mass Index in Convalescent Outpatients. Journal of Immunology, 2022, 208, 1711-1718.	0.8	8
2	Genetic diversity of collaborative cross mice enables identification of novel rift valley fever virus encephalitis model. PLoS Pathogens, 2022, 18, e1010649.	4.7	14
3	A Cross-Sectional Study of SARS-CoV-2 Seroprevalence between Fall 2020 and February 2021 in Allegheny County, Western Pennsylvania, USA. Pathogens, 2021, 10, 710.	2.8	8
4	#41: Mechanistic Immune Correlates of Protection Following Vaccination Against Rift Valley Fever Virus. Journal of the Pediatric Infectious Diseases Society, 2021, 10, S14-S14.	1.3	0
5	Multiplex assessment of SARS-CoV-2 antibodies improves assay sensitivity and correlation with neutralizing antibodies. Clinical Biochemistry, 2021, 97, 54-61.	1.9	8
6	Identification and Characterization of Rift Valley Fever Virus-Specific T Cells Reveals a Dependence on CD40/CD40L Interactions for Prevention of Encephalitis. Journal of Virology, 2021, 95, e0150621.	3.4	5
7	Isotype-Specific Fc Effector Functions Enhance Antibody-Mediated Rift Valley Fever Virus Protection <i>In Vivo</i> . MSphere, 2021, 6, e0055621.	2.9	4
8	Lrp1 is a host entry factor for Rift Valley fever virus. Cell, 2021, 184, 5163-5178.e24.	28.9	46
9	A Mycobacteriophage-Based Vaccine Platform: SARS-CoV-2 Antigen Expression and Display. Microorganisms, 2021, 9, 2414.	3.6	6
10	Prospective Cohort Study of Next-Generation Sequencing as a Diagnostic Modality for Unexplained Encephalitis in Children. Journal of the Pediatric Infectious Diseases Society, 2020, 9, 326-333.	1.3	32
11	Rift Valley Fever Virus Is Lethal in Different Inbred Mouse Strains Independent of Sex. Frontiers in Microbiology, 2020, 11, 1962.	3.5	18
12	SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathogens, 2020, 16, e1008903.	4.7	110
13	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
14	Dynamics of human B and T cell adaptive immune responses to Kyasanur Forest disease virus infection. Scientific Reports, 2020, 10, 15306.	3.3	10
15	Severe Human Lassa Fever Is Characterized by Nonspecific T-Cell Activation and Lymphocyte Homing to Inflamed Tissues. Journal of Virology, 2020, 94, .	3.4	14
16	Rift Valley fever virus vaccination induces long-lived, antigen-specific human T cell responses. Npj Vaccines, 2020, 5, 17.	6.0	17
17	SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients. Journal of General Virology, 2020, 101, 1156-1169.	2.9	131
18	Immunologic timeline of Ebola virus disease and recovery in humans. JCI Insight, 2020, 5, .	5.0	25

#	Article	IF	Citations
19	Rift Valley Fever Virus Infection Causes Acute Encephalitis in the Ferret. MSphere, 2020, 5, .	2.9	8
20	Characterization of Virus-specific Immune Response During Varicella Zoster Virus Encephalitis in a Young Adult. Clinical Infectious Diseases, 2019, 69, 348-351.	5.8	4
21	Macrophage Activation Marker Soluble CD163 Associated with Fatal and Severe Ebola Virus Disease in Humans1. Emerging Infectious Diseases, 2019, 25, 290-298.	4.3	28
22	Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell, 2019, 177, 1566-1582.e17.	28.9	153
23	Ebola virus disease. Lancet, The, 2019, 393, 936-948.	13.7	305
24	Fluorescent Crimean-Congo hemorrhagic fever virus illuminates tissue tropism patterns and identifies early mononuclear phagocytic cell targets in Ifnar-/- mice. PLoS Pathogens, 2019, 15, e1008183.	4.7	19
25	Adaptive Immune Responses in Humans During Nipah Virus Acute and Convalescent Phases of Infection. Clinical Infectious Diseases, 2019, 69, 1752-1756.	5.8	27
26	Immune barriers of Ebola virus infection. Current Opinion in Virology, 2018, 28, 152-160.	5.4	25
27	Encephalitis and Thalamic Injury From Neuroinvasive West Nile Virus in Children on Treatment for Acute Lymphoblastic Leukemia. Pediatric Neurology, 2018, 80, 84-87.	2.1	5
28	Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing. MBio, 2018, 9, .	4.1	58
29	CD4 T Cells, CD8 T Cells, and Monocytes Coordinate To Prevent Rift Valley Fever Virus Encephalitis. Journal of Virology, 2018, 92, .	3.4	18
30	Human immune cell engraftment does not alter development of severe acute Rift Valley fever in mice. PLoS ONE, 2018, 13, e0201104.	2.5	2
31	Rift valley fever viral load correlates with the human inflammatory response and coagulation pathway abnormalities in humans with hemorrhagic manifestations. PLoS Neglected Tropical Diseases, 2018, 12, e0006460.	3.0	21
32	Human Biomarkers of Outcome Following Rift Valley Fever Virus Infection. Journal of Infectious Diseases, 2018, 218, 1847-1851.	4.0	8
33	Innate immune responses elicited by Sin Nombre virus or type I IFN agonists protect hamsters from lethal Andes virus infections. Journal of General Virology, 2018, 99, 1359-1366.	2.9	5
34	First Newborn Baby to Receive Experimental Therapies Survives Ebola Virus Disease. Journal of Infectious Diseases, 2017, 215, jiw493.	4.0	104
35	Crimean-Congo Hemorrhagic Fever in Humanized Mice Reveals Glial Cells as Primary Targets of Neurological Infection. Journal of Infectious Diseases, 2017, 216, 1386-1397.	4.0	43
36	Whole Blood-Based Multiplex Immunoassays for the Evaluation of Human Biomarker Responses to Emerging Viruses in Resource-Limited Regions. Viral Immunology, 2017, 30, 671-674.	1.3	3

#	Article	IF	CITATIONS
37	Ebola Virus Disease in Humans: Pathophysiology and Immunity. Current Topics in Microbiology and Immunology, 2017, 411, 141-169.	1.1	31
38	Favipiravir and Ribavirin Treatment of Epidemiologically Linked Cases of Lassa Fever. Clinical Infectious Diseases, 2017, 65, 855-859.	5.8	101
39	A Case of Human Lassa Virus Infection With Robust Acute T-Cell Activation and Long-Term Virus-Specific T-Cell Responses. Journal of Infectious Diseases, 2017, 215, 1862-1872.	4.0	44
40	Ebola Virus Persistence in Semen of Male Survivors. Clinical Infectious Diseases, 2016, 62, 1552-1555.	5.8	101
41	Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nature Immunology, 2016, 17, 1226-1234.	14.5	348
42	Rift Valley fever virus: Unanswered questions. Antiviral Research, 2016, 132, 274-280.	4.1	46
43	Kinetic Analysis of Biomarkers in a Cohort of US Patients With Ebola Virus Disease. Clinical Infectious Diseases, 2016, 63, 460-467.	5.8	50
44	Ebola Virus Disease. Pediatric Infectious Disease Journal, 2015, 34, 893-897.	2.0	28
45	Von Willebrand Factor Is Elevated in Individuals Infected with Sudan Virus and Is Associated with Adverse Clinical Outcomes. Viral Immunology, 2015, 28, 71-73.	1.3	18
46	Human Ebola virus infection results in substantial immune activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4719-4724.	7.1	274
47	The Use of TKM-100802 and Convalescent Plasma in 2 Patients With Ebola Virus Disease in the United States. Clinical Infectious Diseases, 2015, 61, 496-502.	5.8	182
48	Relationship Between Ebola Virus Real-Time Quantitative Polymerase Chain Reaction–Based Threshold Cycle Value and Virus Isolation From Human Plasma. Journal of Infectious Diseases, 2015, 212, S346-S349.	4.0	29
49	Reply to Fedson. Journal of Infectious Diseases, 2015, 211, 662-663.	4.0	1
50	Biomarker Correlates of Survival in Pediatric Patients with Ebola Virus Disease. Emerging Infectious Diseases, 2014, 20, 1683-90.	4.3	79
51	Rift Valley Fever Virus Encephalitis Is Associated with an Ineffective Systemic Immune Response and Activated T Cell Infiltration into the CNS in an Immunocompetent Mouse Model. PLoS Neglected Tropical Diseases, 2014, 8, e2874.	3.0	41
52	Marburgvirus Resurgence in Kitaka Mine Bat Population after Extermination Attempts, Uganda. Emerging Infectious Diseases, 2014, 20, 1761-1764.	4.3	97
53	Biomarkers for understanding Ebola virus disease. Biomarkers in Medicine, 2014, 8, 1053-1056.	1.4	9
54	Clinical Care of Two Patients with Ebola Virus Disease in the United States. New England Journal of Medicine, 2014, 371, 2402-2409.	27.0	310

#	Article	lF	Citations
55	Ebola Hemorrhagic Fever: Novel Biomarker Correlates of Clinical Outcome. Journal of Infectious Diseases, 2014, 210, 558-566.	4.0	168
56	Bacillary Angiomatosis in Patients With Cancer: A Pediatric Case Report and a Review of the Literature. Journal of the Pediatric Infectious Diseases Society, 2013, 2, 175-178.	1.3	7
57	Development of a reverse genetics system to generate recombinant Marburg virus derived from a bat isolate. Virology, 2013, 446, 230-237.	2.4	42
58	Rift Valley Fever Virus Clearance and Protection from Neurologic Disease Are Dependent on CD4 ⁺ T Cell and Virus-Specific Antibody Responses. Journal of Virology, 2013, 87, 6161-6171.	3.4	46
59	<i><scp>B</scp>artonella henselae</i> à€mediated disease in solid organ transplant recipients: two pediatric cases and a literature review. Transplant Infectious Disease, 2012, 14, E71-81.	1.7	42
60	Rift Valley fever virus inhibits a pro-inflammatory response in experimentally infected human monocyte derived macrophages and a pro-inflammatory cytokine response may be associated with patient survival during natural infection. Virology, 2012, 422, 6-12.	2.4	67
61	Rift Valley Fever Virus Vaccine Lacking the NSs and NSm Genes Is Safe, Nonteratogenic, and Confers Protection from Viremia, Pyrexia, and Abortion following Challenge in Adult and Pregnant Sheep. Journal of Virology, 2011, 85, 12901-12909.	3.4	106
62	Development of a RVFV ELISA that can distinguish infected from vaccinated animals. Virology Journal, 2009, 6, 125.	3.4	61
63	Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine, 2006, 24, 4657-4666.	3.8	117
64	Identification of Dobrava, Hantaan, Seoul, and Puumala viruses by one-step real-time RT-PCR. Journal of Virological Methods, 2005, 124, 21-26.	2.1	57
65	Cyclin-Dependent Kinase Activity Is Required at Early Times for Accurate Processing and Accumulation of the Human Cytomegalovirus UL122-123 and UL37 Immediate-Early Transcripts and at Later Times for Virus Production. Journal of Virology, 2004, 78, 11219-11232.	3.4	79
66	Mechanisms Governing Maintenance of Cdk1/Cyclin B1Kinase Activity in Cells Infected with HumanCytomegalovirus. Journal of Virology, 2003, 77, 13214-13224.	3.4	65
67	Andes Virus Infection of Cynomolgus Macaques. Journal of Infectious Diseases, 2002, 186, 1706-1712.	4.0	32
68	The Use of Recombinant Baculoviruses for Sustained Expression of Human Cytomegalovirus Immediate Early Proteins in Fibroblasts. Virology, 2001, 284, 297-307.	2.4	33
69	Dysregulation of Cyclin E Gene Expression in Human Cytomegalovirus-Infected Cells Requires Viral Early Gene Expression and Is Associated with Changes in the Rb-Related Protein p130. Journal of Virology, 2000, 74, 4192-4206.	3.4	43
70	Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends in Microbiology, 2000, 8, 111-119.	7.7	123
71	Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7457-7462.	7.1	290