

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443968/publications.pdf Version: 2024-02-01

		394286	434063
31	2,540	19	31
papers	citations	h-index	g-index
31	31	31	2459
all docs	docs citations	times ranked	citing authors

in char-

#	Article	IF	CITATIONS
1	A Unique Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo Imaging. Journal of the American Chemical Society, 2012, 134, 13510-13523.	6.6	563
2	A Unique "Integration―Strategy for the Rational Design of Optically Tunable Near-Infrared Fluorophores. Accounts of Chemical Research, 2017, 50, 1410-1422.	7.6	263
3	Dual Site-Controlled and Lysosome-Targeted Intramolecular Charge Transfer–Photoinduced Electron Transfer–Fluorescence Resonance Energy Transfer Fluorescent Probe for Monitoring pH Changes in Living Cells. Analytical Chemistry, 2016, 88, 4085-4091.	3.2	220
4	Single Fluorescent Probe for Dual-Imaging Viscosity and H ₂ O ₂ in Mitochondria with Different Fluorescence Signals in Living Cells. Analytical Chemistry, 2017, 89, 552-555.	3.2	204
5	Fluorescent Probes for the Visualization of Cell Viability. Accounts of Chemical Research, 2019, 52, 2147-2157.	7.6	165
6	A unique carbazole–coumarin fused two-photon platform: development of a robust two-photon fluorescent probe for imaging carbon monoxide in living tissues. Chemical Science, 2014, 5, 3439.	3.7	151
7	Visualization of Mitochondrial Viscosity in Inflammation, Fatty Liver, and Cancer Living Mice by a Robust Fluorescent Probe. Analytical Chemistry, 2019, 91, 8415-8421.	3.2	125
8	Dynamically Monitoring Cell Viability in a Dualâ€Color Mode: Construction of an Aggregation/Monomerâ€Based Probe Capable of Reversible Mitochondriaâ€Nucleus Migration. Angewandte Chemie - International Edition, 2018, 57, 16506-16510.	7.2	108
9	A new strategy to construct a FRET platform for ratiometric sensing of hydrogen sulfide. Chemical Communications, 2015, 51, 1510-1513.	2.2	105
10	Construction of a Nearâ€Infrared Fluorescent Turnâ€On Probe for Selenol and Its Bioimaging Application in Living Animals. Chemistry - A European Journal, 2015, 21, 11696-11700.	1.7	94
11	A novel NIR probe for detection of viscosity in cellular lipid droplets, zebra fishes and living mice. Sensors and Actuators B: Chemical, 2018, 271, 321-328.	4.0	78
12	Construction of a ratiometric two-photon fluorescent probe to monitor the changes of mitochondrial viscosity. Sensors and Actuators B: Chemical, 2018, 262, 452-459.	4.0	74
13	Aurone Derivative Revealing the Metabolism of Lipid Droplets and Monitoring Oxidative Stress in Living Cells. Analytical Chemistry, 2020, 92, 6631-6636.	3.2	64
14	A dual-site controlled ratiometric probe revealing the simultaneous down-regulation of pH in lysosomes and cytoplasm during autophagy. Chemical Communications, 2019, 55, 10440-10443.	2.2	46
15	A two-photon fluorescent probe for detecting lipid droplet viscosity in living cells and zebra fish. New Journal of Chemistry, 2018, 42, 18521-18525.	1.4	32
16	A near infrared ratiometric fluorescent probe with aggregation induced emission (AIE) characteristics for hydrazine detection in vitro and in vivo. Dyes and Pigments, 2021, 188, 109177.	2.0	31
17	Development of a two-photon fluorescent probe to monitor the changes of viscosity in living cells, zebra fish and mice. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117310.	2.0	30
18	Development of a red-emissive two-photon fluorescent probe for sensitive detection of beta-galactosidase in vitro and in vivo. Sensors and Actuators B: Chemical, 2020, 307, 127643.	4.0	30

Ä»£Ç¤∕4Æ—<

#	Article	IF	CITATIONS
19	A targetable fluorescent probe for real-time monitoring of fluoride ions in mitochondria. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 777-782.	2.0	19
20	A deep-red emission fluorescent probe for detection of viscosity in living cells and mice. Analytical Methods, 2019, 11, 2626-2629.	1.3	18
21	Development of a two-photon fluorescent probe for the selective detection of Î ² -galactosidase in living cells and tissues. Journal of Materials Chemistry B, 2019, 7, 3431-3437.	2.9	16
22	Construction of a fluorescent probe with large stokes shift and deep red emission for sensing of the viscosity in hyperglycemic mice. Dyes and Pigments, 2021, 195, 109674.	2.0	16
23	Tracking mitochondrial viscosity in living systems based on a two-photon and near red probe. New Journal of Chemistry, 2019, 43, 16945-16949.	1.4	15
24	Construction of a novel mitochondria-targeted near-infrared (NIR) probe for detection of viscosity changes in cancer cells ferroptosis process. Dyes and Pigments, 2022, 200, 110184.	2.0	14
25	NIR fluorescence imaging of lipid drops viscosity in liver organs of diabetic mice. Dyes and Pigments, 2021, 187, 109120.	2.0	13
26	Lipid droplet polarity decreases during the pathology of muscle injury as revealed by a polarity sensitive sensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120149.	2.0	13
27	Development of a novel NIR viscosity fluorescent probe for visualizing the kidneys in diabetic mice. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119627.	2.0	10
28	A targetable fluorescent probe for imaging of mitochondrial viscosity in living cells. Analytical Methods, 2019, 11, 4561-4565.	1.3	9
29	Ratiometric probe with optimized permeability for visualizing lysosomal acidification during autophagy. Dyes and Pigments, 2022, 197, 109951.	2.0	6
30	Real-time monitoring viscosity variation in carcinogenesis evolution models by a red-emitting rotor. Dyes and Pigments, 2021, 188, 109170.	2.0	5
31	Exploring of blood viscosity in injured liver tissues of hyperlipidemic mice. Dyes and Pigments, 2022, 202, 110272.	2.0	3