Paul Saftig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443879/publications.pdf Version: 2024-02-01

4388	4228
158 86	174
ons h-ind	lex g-index
12 21	2 33583
tations times r	anked citing authors
	158 86 ons h-ind 12 21 tations times r

DALLI SAFTIC

#	Article	IF	CITATIONS
1	A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature, 1999, 398, 518-522.	27.8	2,002
2	Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 1998, 391, 387-390.	27.8	1,765
3	Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Reviews Molecular Cell Biology, 2009, 10, 623-635.	37.0	1,320
4	Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. Journal of Cell Biology, 2004, 164, 769-779.	5.2	895
5	Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 2000, 406, 902-906.	27.8	836
6	Role for Rab7 in maturation of late autophagic vacuoles. Journal of Cell Science, 2004, 117, 4837-4848.	2.0	781
7	The Tetraspanin CD63 Regulates ESCRT-Independent and -Dependent Endosomal Sorting during Melanogenesis. Developmental Cell, 2011, 21, 708-721.	7.0	687
8	Control of Peripheral Nerve Myelination by the ß-Secretase BACE1. Science, 2006, 314, 664-666.	12.6	652
9	The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood, 2003, 102, 1186-1195.	1.4	624
10	ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9182-9187.	7.1	604
11	Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 664-673.	4.1	581
12	The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Human Molecular Genetics, 2002, 11, 2615-2624.	2.9	580
13	At the acidic edge: emerging functions for lysosomal membrane proteins. Trends in Cell Biology, 2003, 13, 137-145.	7.9	564
14	LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO Journal, 2007, 26, 313-324.	7.8	542
15	The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. Journal of Cell Science, 2005, 118, 3091-3102.	2.0	487
16	A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membraneâ€bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB Journal, 2008, 22, 3716-3727.	0.5	483
17	ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling. EMBO Journal, 2005, 24, 742-752.	7.8	438
18	LIMP-2 Is a Receptor for Lysosomal Mannose-6-Phosphate-Independent Targeting of β-Glucocerebrosidase. Cell, 2007, 131, 770-783.	28.9	428

#	Article	IF	CITATIONS
19	μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO Journal, 2000, 19, 2193-2203.	7.8	388
20	The Transmembrane CXC-Chemokine Ligand 16 Is Induced by IFN-Î ³ and TNF-α and Shed by the Activity of the Disintegrin-Like Metalloproteinase ADAM10. Journal of Immunology, 2004, 172, 6362-6372.	0.8	369
21	The "A Disintegrin And Metalloprotease―(ADAM) family of sheddases: Physiological and cellular functions. Seminars in Cell and Developmental Biology, 2009, 20, 126-137.	5.0	356
22	Cathepsin D Deficiency Induces Lysosomal Storage with Ceroid Lipofuscin in Mouse CNS Neurons. Journal of Neuroscience, 2000, 20, 6898-6906.	3.6	353
23	Cellular Cholesterol Depletion Triggers Shedding of the Human Interleukin-6 Receptor by ADAM10 and ADAM17 (TACE). Journal of Biological Chemistry, 2003, 278, 38829-38839.	3.4	332
24	The Disintegrin/Metalloproteinase ADAM10 Is Essential for the Establishment of the Brain Cortex. Journal of Neuroscience, 2010, 30, 4833-4844.	3.6	327
25	Role of LAMP-2 in Lysosome Biogenesis and Autophagy. Molecular Biology of the Cell, 2002, 13, 3355-3368.	2.1	309
26	Phenotypic and Biochemical Analyses of BACE1- and BACE2-deficient Mice. Journal of Biological Chemistry, 2005, 280, 30797-30806.	3.4	309
27	Participation of Autophagy in Storage of Lysosomes in Neurons from Mouse Models of Neuronal Ceroid-Lipofuscinoses (Batten Disease). American Journal of Pathology, 2005, 167, 1713-1728.	3.8	305
28	Cathepsin L deficiency as molecular defect offurless:hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB Journal, 2000, 14, 2075-2086.	0.5	290
29	Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. Journal of Experimental Medicine, 2010, 207, 1617-1624.	8.5	286
30	Substrate Selectivity of Epidermal Growth Factor-Receptor Ligand Sheddases and their Regulation by Phorbol Esters and Calcium Influx. Molecular Biology of the Cell, 2007, 18, 176-188.	2.1	276
31	ADAM10 Regulates Endothelial Permeability and T-Cell Transmigration by Proteolysis of Vascular Endothelial Cadherin. Circulation Research, 2008, 102, 1192-1201.	4.5	264
32	Cell–matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation. Journal of Cell Biology, 2004, 165, 893-902.	5.2	260
33	β Subunits of Voltage-gated Sodium Channels Are Novel Substrates of β-Site Amyloid Precursor Protein-cleaving Enzyme (BACE1) and γ-Secretase. Journal of Biological Chemistry, 2005, 280, 23009-23017.	3.4	260
34	The "A Disintegrin And Metalloproteases―ADAM10 and ADAM17: Novel drug targets with therapeutic potential?. European Journal of Cell Biology, 2011, 90, 527-535.	3.6	256
35	Cathepsin D Deficiency Is Associated with a Human Neurodegenerative Disorder. American Journal of Human Genetics, 2006, 78, 988-998.	6.2	255
36	Lassa virus entry requires a trigger-induced receptor switch. Science, 2014, 344, 1506-1510.	12.6	251

#	Article	IF	CITATIONS
37	Cell Surface Presenilin-1 Participates in the γ-Secretase-like Proteolysis of Notch. Journal of Biological Chemistry, 1999, 274, 36801-36807.	3.4	246
38	Disturbed Cholesterol Traffic but Normal Proteolytic Function in LAMP-1/LAMP-2 Double-deficient Fibroblasts. Molecular Biology of the Cell, 2004, 15, 3132-3145.	2.1	241
39	Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Molecular Brain, 2009, 2, 5.	2.6	232
40	The Cell Adhesion Protein P-selectin Glycoprotein Ligand-1 Is a Substrate for the Aspartyl Protease BACE1. Journal of Biological Chemistry, 2003, 278, 48713-48719.	3.4	230
41	Array-Based Gene Discovery with Three Unrelated Subjects Shows SCARB2/LIMP-2 Deficiency Causes Myoclonus Epilepsy and Glomerulosclerosis. American Journal of Human Genetics, 2008, 82, 673-684.	6.2	230
42	ADAMs 10 and 17 Represent Differentially Regulated Components of a General Shedding Machinery for Membrane Proteins Such as Transforming Growth Factor α, L-Selectin, and Tumor Necrosis Factor α. Molecular Biology of the Cell, 2009, 20, 1785-1794.	2.1	230
43	Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature, 2013, 504, 172-176.	27.8	226
44	The Disintegrins ADAM10 and TACE Contribute to the Constitutive and Phorbol Ester-regulated Normal Cleavage of the Cellular Prion Protein. Journal of Biological Chemistry, 2001, 276, 37743-37746.	3.4	222
45	Klotho is a substrate for αâ€, β―and γâ€secretase. FEBS Letters, 2009, 583, 3221-3224.	2.8	215
46	L1 Is Sequentially Processed by Two Differently Activated Metalloproteases and Presenilin/Î ³ -Secretase and Regulates Neural Cell Adhesion, Cell Migration, and Neurite Outgrowth. Molecular and Cellular Biology, 2005, 25, 9040-9053.	2.3	212
47	Ectodomain shedding and ADAMs in development. Development (Cambridge), 2012, 139, 3693-3709.	2.5	211
48	Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO Journal, 2007, 26, 494-504.	7.8	203
49	LAMP-2: A control step for phagosome and autophagosome maturation. Autophagy, 2008, 4, 510-512.	9.1	190
50	The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Progress in Neurobiology, 2015, 135, 1-20.	5.7	190
51	ADAM10 is a principal 'sheddase' of the low-affinity immunoglobulin E receptor CD23. Nature Immunology, 2006, 7, 1293-1298.	14.5	189
52	Thyroid functions of mouse cathepsins B, K, and L. Journal of Clinical Investigation, 2003, 111, 1733-1745.	8.2	188
53	The proteome of lysosomes. Proteomics, 2010, 10, 4053-4076.	2.2	188
54	Activity-Dependent Proteolytic Cleavage of Neuroligin-1. Neuron, 2012, 76, 410-422.	8.1	179

#	Article	IF	CITATIONS
55	Lysosomal Membrane Proteins and Their Central Role in Physiology. Traffic, 2013, 14, 739-748.	2.7	175
56	ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. Journal of Cell Science, 2010, 123, 3913-3922.	2.0	165
57	High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nature Communications, 2014, 5, 4699.	12.8	164
58	ADAM10, the Rate-limiting Protease of Regulated Intramembrane Proteolysis of Notch and Other Proteins, Is Processed by ADAMS-9, ADAMS-15, and the Î ³ -Secretase. Journal of Biological Chemistry, 2009, 284, 11738-11747.	3.4	161
59	Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Human Molecular Genetics, 2017, 26, 3960-3972.	2.9	160
60	The discrepancy between presenilin subcellular localization and γ -secretase processing of amyloid precursor protein. Journal of Cell Biology, 2001, 154, 731-740.	5.2	155
61	Regulated Shedding of Transmembrane Chemokines by the Disintegrin and Metalloproteinase 10 Facilitates Detachment of Adherent Leukocytes. Journal of Immunology, 2007, 178, 8064-8072.	0.8	151
62	Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Molecular and Cellular Neurosciences, 2003, 22, 146-161.	2.2	142
63	Lysosomal storage disorders – challenges, concepts and avenues for therapy: beyond rare diseases. Journal of Cell Science, 2019, 132, jcs221739.	2.0	141
64	Evidence for a Critical Role of the Tumor Necrosis Factor α Convertase (TACE) in Ectodomain Shedding of the p75 Neurotrophin Receptor (p75NTR). Journal of Biological Chemistry, 2004, 279, 4241-4249.	3.4	134
65	Presenilin-1 deficiency leads to loss of Cajal–Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Current Biology, 1999, 9, 719-727.	3.9	132
66	A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. Journal of Cell Science, 2002, 115, 4117-4131.	2.0	132
67	Regulated Intramembrane Proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b. Journal of Biological Chemistry, 2008, 283, 1644-1652.	3.4	132
68	The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development (Cambridge), 2011, 138, 495-505.	2.5	130
69	Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. ELife, 2016, 5, .	6.0	124
70	Breaking up the tie: Disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. , 2006, 111, 985-1006.		115
71	Involvement of Nitric Oxide Released from Microglia–Macrophages in Pathological Changes of Cathepsin D-Deficient Mice. Journal of Neuroscience, 2001, 21, 7526-7533.	3.6	113
72	Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Human Molecular Genetics, 2017, 26, 2850-2863.	2.9	111

#	Article	IF	CITATIONS
73	The metalloproteinase ADAM10: A useful therapeutic target?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2071-2081.	4.1	111
74	LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Human Molecular Genetics, 2003, 12, 631-646.	2.9	110
75	LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proceedings of the United States of America, 2014, 111, 15573-15578.	7.1	109
76	Postnatal Disruption of the Disintegrin/Metalloproteinase ADAM10 in Brain Causes Epileptic Seizures, Learning Deficits, Altered Spine Morphology, and Defective Synaptic Functions. Journal of Neuroscience, 2013, 33, 12915-12928.	3.6	107
77	Proteomic Identification of Desmoglein 2 and Activated Leukocyte Cell Adhesion Molecule as Substrates of ADAM17 and ADAM10 by Difference Gel Electrophoresis. Molecular and Cellular Biology, 2006, 26, 5086-5095.	2.3	106
78	Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Human Molecular Genetics, 2013, 22, 1417-1423.	2.9	105
79	Furin-, ADAM 10-, and γ-Secretase-Mediated Cleavage of a Receptor Tyrosine Phosphatase and Regulation of β-Catenin's Transcriptional Activity. Molecular and Cellular Biology, 2006, 26, 3917-3934.	2.3	102
80	The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. Journal of Experimental Medicine, 2013, 210, 41-58.	8.5	100
81	Deficiency of the Tetraspanin CD63 Associated with Kidney Pathology but Normal Lysosomal Function. Molecular and Cellular Biology, 2009, 29, 1083-1094.	2.3	99
82	Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cellular and Molecular Life Sciences, 2012, 69, 2919-2932.	5.4	99
83	Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nature Communications, 2019, 10, 3521.	12.8	99
84	Disease model: LAMP-2 enlightens Danon disease. Trends in Molecular Medicine, 2001, 7, 37-39.	6.7	98
85	Cholesterol Handling in Lysosomes and Beyond. Trends in Cell Biology, 2020, 30, 452-466.	7.9	97
86	Regulated ADAM10-dependent Ectodomain Shedding of γ-Protocadherin C3 Modulates Cell-Cell Adhesion. Journal of Biological Chemistry, 2006, 281, 21735-21744.	3.4	94
87	Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Molecular Neurodegeneration, 2011, 6, 36.	10.8	93
88	Neuronal Brain-derived Neurotrophic Factor Is Synthesized in Excess, with Levels Regulated by Sortilin-mediated Trafficking and Lysosomal Degradation. Journal of Biological Chemistry, 2011, 286, 29556-29567.	3.4	91
89	Efficacy of enzyme replacement therapy in Â-mannosidosis mice: a preclinical animal study. Human Molecular Genetics, 2004, 13, 1979-1988.	2.9	87
90	Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand β-glucocerebrosidase. Human Molecular Genetics, 2010, 19, 563-572.	2.9	86

#	Article	IF	CITATIONS
91	How Lysosomes Sense, Integrate, and Cope with Stress. Trends in Biochemical Sciences, 2021, 46, 97-112.	7.5	84
92	Sphingolipid Storage Affects Autophagic Metabolism of the Amyloid Precursor Protein and Promotes Al² Generation. Journal of Neuroscience, 2011, 31, 1837-1849.	3.6	82
93	ADAM10-Mediated E-Cadherin Release Is Regulated by Proinflammatory Cytokines and Modulates Keratinocyte Cohesion in Eczematous Dermatitis. Journal of Investigative Dermatology, 2008, 128, 1737-1746.	0.7	79
94	Synaptic Changes in the Thalamocortical System of Cathepsin D-Deficient Mice. Journal of Neuropathology and Experimental Neurology, 2008, 67, 16-29.	1.7	79
95	CD63 is an essential cofactor to leukocyte recruitment by endothelial P-selectin. Blood, 2011, 118, 4265-4273.	1.4	79
96	Killing from the inside. Nature, 2013, 502, 312-313.	27.8	79
97	Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Human Molecular Genetics, 2004, 13, 1321-1331.	2.9	76
98	Vacuolar ATPase in Phagosome-Lysosome Fusion. Journal of Biological Chemistry, 2015, 290, 14166-14180.	3.4	75
99	Turn up the lysosome. Nature Cell Biology, 2016, 18, 1025-1027.	10.3	74
100	Lysosomal membrane proteins: life between acid and neutral conditions. Biochemical Society Transactions, 2010, 38, 1420-1423.	3.4	73
101	Cytoplasmic Relaxation of Active Eph Controls Ephrin Shedding by ADAM10. PLoS Biology, 2009, 7, e1000215.	5.6	72
102	Regulated Proteolysis of NOTCH2 and NOTCH3 Receptors by ADAM10 and Presenilins. Molecular and Cellular Biology, 2014, 34, 2822-2832.	2.3	72
103	Soluble Axl Is Generated by ADAM10-Dependent Cleavage and Associates with Gas6 in Mouse Serum. Molecular and Cellular Biology, 2005, 25, 9324-9339.	2.3	70
104	Arrested maturation ofNeisseria-containing phagosomes in the absence of the lysosome-associated membrane proteins, LAMP-1 and LAMP-2. Cellular Microbiology, 2007, 9, 2153-2166.	2.1	70
105	Role for LAMP-2 in endosomal cholesterol transport. Journal of Cellular and Molecular Medicine, 2011, 15, 280-295.	3.6	70
106	Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy, 2020, 16, 811-825.	9.1	70
107	Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood, 2011, 118, 1163-1174.	1.4	69
108	Impaired Phagosomal Maturation in Neutrophils Leads to Periodontitis in Lysosomal-Associated Membrane Protein-2 Knockout Mice. Journal of Immunology, 2008, 180, 475-482.	0.8	67

#	Article	IF	CITATIONS
109	Sensitivity to Lysosome-Dependent Cell Death Is Directly Regulated by Lysosomal Cholesterol Content. PLoS ONE, 2012, 7, e50262.	2.5	66
110	The sheddase ADAM10 is a potent modulator of prion disease. ELife, 2015, 4, .	6.0	66
111	Natural Soluble Interleukin-15Rα Is Generated by Cleavage That Involves the Tumor Necrosis Factor-α-converting Enzyme (TACE/ADAM17). Journal of Biological Chemistry, 2004, 279, 40368-40375.	3.4	65
112	LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathologica Communications, 2015, 3, 6.	5.2	63
113	Neurocognitive and Psychotiform Behavioral Alterations and Enhanced Hippocampal Long-Term Potentiation in Transgenic Mice Displaying Neuropathological Features of Human Â-Mannosidosis. Journal of Neuroscience, 2005, 25, 6539-6549.	3.6	62
114	ADAM10 Inhibition of Human CD30 Shedding Increases Specificity of Targeted Immunotherapy In vitro. Cancer Research, 2007, 67, 332-338.	0.9	62
115	Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in α-mannosidosis mice. Human Molecular Genetics, 2008, 17, 3437-3445.	2.9	60
116	Diverse functions of the prion protein – Does proteolytic processing hold the key?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2128-2137.	4.1	60
117	Parkinson's disease: acidâ€glucocerebrosidase activity and alphaâ€synuclein clearance. Journal of Neurochemistry, 2016, 139, 198-215.	3.9	59
118	Deafness in LIMP2-deficient mice due to early loss of the potassium channel KCNQ1/KCNE1 in marginal cells of the stria vascularis. Journal of Physiology, 2006, 576, 73-86.	2.9	54
119	Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23724-23734.	7.1	54
120	Mannose 6-phosphate receptors, Niemann-Pick C2 protein, and lysosomal cholesterol accumulation. Journal of Lipid Research, 2005, 46, 2559-2569.	4.2	52
121	Physiological functions of the amyloid precursor protein secretases ADAM10, BACE1, and Presenilin. Experimental Brain Research, 2012, 217, 331-341.	1.5	52
122	Natural history of alpha mannosidosis a longitudinal study. Orphanet Journal of Rare Diseases, 2013, 8, 88.	2.7	50
123	LAMP-2 deficient mice show depressed cardiac contractile function without significant changes in calcium handling. Basic Research in Cardiology, 2006, 101, 281-291.	5.9	49
124	ADAM17 controls IL-6 signaling by cleavage of the murine IL-6Rα from the cell surface of leukocytes during inflammatory responses. Journal of Leukocyte Biology, 2016, 99, 749-760.	3.3	49
125	LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Human Molecular Genetics, 2003, 12, 631-46.	2.9	49
126	The FTLD Risk Factor TMEM106B Regulates the Transport of Lysosomes at the Axon Initial Segment of Motoneurons. Cell Reports, 2020, 30, 3506-3519.e6.	6.4	47

#	Article	IF	CITATIONS
127	Alcadein Cleavages by Amyloid β-Precursor Protein (APP) α- and γ-Secretases Generate Small Peptides, p3-Alcs, Indicating Alzheimer Disease-related γ-Secretase Dysfunction. Journal of Biological Chemistry, 2009, 284, 36024-36033.	3.4	46
128	Activity-dependent α-Cleavage of Nectin-1 Is Mediated by A Disintegrin and Metalloprotease 10 (ADAM10). Journal of Biological Chemistry, 2010, 285, 22919-22926.	3.4	46
129	Myeloid A Disintegrin and Metalloproteinase Domain 10 Deficiency Modulates Atherosclerotic Plaque Composition by Shifting the Balance from Inflammation toward Fibrosis. American Journal of Pathology, 2015, 185, 1145-1155.	3.8	46
130	Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3791-3796.	7.1	45
131	Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein. Molecular Neurodegeneration, 2018, 13, 18.	10.8	45
132	The endolysosomal cysteine cathepsins L and K are involved in macrophageâ€mediated clearance of <i>Staphylococcus aureus</i> and the concomitant cytokine induction. FASEB Journal, 2014, 28, 162-175.	0.5	44
133	Molecular characterisation of †transmembrane protein 192' (TMEM192), a novel protein of the lysosomal membrane. Biological Chemistry, 2010, 391, 695-704.	2.5	43
134	Mannose 6 Dephosphorylation of Lysosomal Proteins Mediated by Acid Phosphatases Acp2 and Acp5. Molecular and Cellular Biology, 2012, 32, 774-782.	2.3	43
135	Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nature Communications, 2017, 8, 1908.	12.8	43
136	CNS-Expressed Cathepsin D Prevents Lymphopenia in a Murine Model of Congenital Neuronal Ceroid Lipofuscinosis. American Journal of Pathology, 2010, 177, 271-279.	3.8	42
137	A Critical Histidine Residue Within <scp>LIMP</scp> â€2 Mediates <scp>pH</scp> ÂSensitive Binding to Its Ligand βâ€Glucocerebrosidase. Traffic, 2012, 13, 1113-1123.	2.7	41
138	The Emerging Role of Tetraspanins in the Proteolytic Processing of the Amyloid Precursor Protein. Frontiers in Molecular Neuroscience, 2016, 9, 149.	2.9	40
139	Non-proteolytic effect of β-site APP-cleaving enzyme 1 (BACE1) on sodium channel function. Neurobiology of Disease, 2009, 33, 282-289.	4.4	39
140	Signal-peptide-peptidase-like 2a (SPPL2a) is targeted to lysosomes/late endosomes by a tyrosine motif in its C-terminal tail. FEBS Letters, 2011, 585, 2951-2957.	2.8	39
141	The lysosomal polypeptide transporter TAPL is stabilized by the interaction with LAMP-1 and LAMP-2. Journal of Cell Science, 2012, 125, 4230-40.	2.0	39
142	ADAM metalloproteases promote a developmental switch in responsiveness to the axonal repellant Sema3A. Nature Communications, 2014, 5, 4058.	12.8	39
143	Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington's disease. Journal of Clinical Investigation, 2019, 129, 2390-2403.	8.2	38
144	Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. Journal of Experimental Medicine, 2007, 204, 1227-1235.	8.5	37

#	Article	IF	CITATIONS
145	TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice. Haematologica, 2015, 100, 1005-13.	3.5	37
146	Sequestration of cholesterol within the host late endocytic pathway restricts liver-stage <i>Plasmodium</i> development. Molecular Biology of the Cell, 2017, 28, 726-735.	2.1	37
147	In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cellular and Molecular Life Sciences, 2018, 75, 3251-3267.	5.4	37
148	Vacuolar ATPase in phago(lyso)some biology. International Journal of Medical Microbiology, 2018, 308, 58-67.	3.6	37
149	Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7963-7972.	7.1	36
150	Inhibition of ADAM17 impairs endothelial cell necroptosis and blocks metastasis. Journal of Experimental Medicine, 2022, 219, .	8.5	35
151	β-Secretase BACE1 Regulates Hippocampal and Reconstituted M-Currents in a β-Subunit-Like Fashion. Journal of Neuroscience, 2015, 35, 3298-3311.	3.6	34
152	LAMP proteins account for the maturation delay during the establishment of the <i>Coxiella burnetii</i> -containing vacuole. Cellular Microbiology, 2016, 18, 181-194.	2.1	34
153	Dissecting the role of ADAM10 as a mediator of <i>Staphylococcus aureus</i> α-toxin action. Biochemical Journal, 2016, 473, 1929-1940.	3.7	33
154	Extracellular cathepsin K exerts antimicrobial activity and is protective against chronic intestinal inflammation in mice. Gut, 2013, 62, 520-530.	12.1	31
155	Unconventional Trafficking of Mammalian Phospholipase D3 to Lysosomes. Cell Reports, 2018, 22, 1040-1053.	6.4	31
156	The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex. Journal of Biological Chemistry, 2020, 295, 12822-12839.	3.4	31
157	The Intramembrane Proteases Signal Peptide Peptidase-Like 2a and 2b Have Distinct Functions <i>In Vivo</i> . Molecular and Cellular Biology, 2014, 34, 1398-1411.	2.3	30
158	Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II. Molecular and Cellular Proteomics, 2017, 16, 438-450.	3.8	30
159	Disrupted in renal carcinoma 2 (DIRC2), a novel transporter of the lysosomal membrane, is proteolytically processed by cathepsin L. Biochemical Journal, 2011, 439, 113-128.	3.7	29
160	β-Site APP-cleaving enzyme 1 (BACE1) cleaves cerebellar Na+ channel β4-subunit and promotes Purkinje cell firing by slowing the decay of resurgent Na+ current. Pflugers Archiv European Journal of Physiology, 2011, 461, 355-371.	2.8	27
161	The intramembrane protease <scp>SPPL</scp> 2c promotes male germ cell development by cleavingÂphospholamban. EMBO Reports, 2019, 20, .	4.5	27
162	Tetraspanin 3: A central endocytic membrane component regulating the expression of ADAM10, presenilin and the amyloid precursor protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 217-230.	4.1	26

#	Article	IF	CITATIONS
163	Two dileucine motifs mediate late endosomal/lysosomal targeting of transmembrane protein 192 (TMEM192) and a C-terminal cysteine residue is responsible for disulfide bond formation in TMEM192 homodimers. Biochemical Journal, 2011, 434, 219-231.	3.7	25
164	Processing of CD74 by the Intramembrane Protease SPPL2a Is Critical for B Cell Receptor Signaling in Transitional B Cells. Journal of Immunology, 2015, 195, 1548-1563.	0.8	25
165	Lung emphysema and impaired macrophage elastase clearance in mucolipin 3 deficient mice. Nature Communications, 2022, 13, 318.	12.8	25
166	Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochemical Journal, 2016, 473, 1405-1422.	3.7	24
167	Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice. Journal of Biological Chemistry, 2016, 291, 8414-8427.	3.4	24
168	Mannose 6â€phosphateâ€independent Lysosomal Sorting of <scp>LIMP</scp> â€2. Traffic, 2015, 16, 1127-1136.	2.7	23
169	The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. ELife, 2019, 8, .	6.0	23
170	Cerebellar Alterations and Gait Defects as Therapeutic Outcome Measures for Enzyme Replacement Therapy in α-Mannosidosis. Journal of Neuropathology and Experimental Neurology, 2011, 70, 83-94.	1.7	22
171	The NH2-Terminal Transmembrane and Lumenal Domains of LGP85 are Needed for the Formation of Enlarged Endosomes/Lysosomes. Traffic, 2005, 6, 895-906.	2.7	21
172	Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood–brain barrier. Molecular and Cellular Neurosciences, 2015, 64, 51-60.	2.2	21
173	Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models. Autophagy, 2022, 18, 1127-1151.	9.1	20
174	Signal-peptide-peptidase-like 2a is required for CD74 intramembrane proteolysis in human B cells. Biochemical and Biophysical Research Communications, 2014, 451, 48-53.	2.1	19
175	Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy, 2017, 13, 670-685.	9.1	19
176	Meprin β induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage. FASEB Journal, 2019, 33, 11925-11940.	0.5	18
177	Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. Science Advances, 2021, 7, eabj1826.	10.3	18
178	Presynaptic Endosomal Cathepsin D Regulates the Biogenesis of GABAergic Synaptic Vesicles. Cell Reports, 2019, 28, 1015-1028.e5.	6.4	17
179	A disintegrin and metalloprotease 10 (ADAM10) is a central regulator of murine liver tissue homeostasis. Oncotarget, 2016, 7, 17431-17441.	1.8	17
180	Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis. Nature Communications, 2022, 13, 1880.	12.8	17

#	Article	IF	CITATIONS
181	Proteases at work: cues for understanding neural development and degeneration. Frontiers in Molecular Neuroscience, 2015, 8, 13.	2.9	16
182	Intramembrane proteolysis within lysosomes. Ageing Research Reviews, 2016, 32, 51-64.	10.9	14
183	Regulation of adult hematopoiesis by the a disintegrin and metalloproteinase 10 (ADAM10). Biochemical and Biophysical Research Communications, 2013, 442, 234-241.	2.1	13
184	Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease. Biochemical and Biophysical Research Communications, 2015, 457, 334-340.	2.1	13
185	LAMP2 regulates autophagy in the thymic epithelium and thymic stroma-dependent CD4 T cell development. Autophagy, 2023, 19, 426-439.	9.1	12
186	Multivariate neurocognitive and emotional profile of a mannosidosis murine model for therapy assessment. Neurobiology of Disease, 2006, 23, 422-432.	4.4	11
187	The Influence of MHC Class II on B Cell Defects Induced by Invariant Chain/CD74 N-Terminal Fragments. Journal of Immunology, 2017, 199, 172-185.	0.8	11
188	ADAM10 hyperactivation acts on piccolo to deplete synaptic vesicle stores in Huntington's disease. Human Molecular Genetics, 2021, 30, 1175-1187.	2.9	11
189	GPR37 is processed in the Nâ€ŧerminal ectodomain by ADAM10 and furin. FASEB Journal, 2021, 35, e21654.	0.5	11
190	Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice—An Animal Model of CLN10 Disease. Cells, 2021, 10, 696.	4.1	10
191	Analysis of cathepsin B and cathepsin L treatment to clear toxic lysosomal protein aggregates in neuronal ceroid lipofuscinosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166205.	3.8	10
192	Parallel regulation of renin and lysosomal integral membrane protein 2 in renin-producing cells: further evidence for a lysosomal nature of renin secretory vesicles. Pflugers Archiv European Journal of Physiology, 2013, 465, 895-905.	2.8	9
193	Chronic enzyme replacement therapy ameliorates neuropathology in alphaâ€mannosidosis mice. Annals of Clinical and Translational Neurology, 2015, 2, 987-1001.	3.7	8
194	Long-term enzyme replacement therapy improves neurocognitive functioning and hippocampal synaptic plasticity in immune-tolerant alpha-mannosidosis mice. Neurobiology of Disease, 2017, 106, 255-268.	4.4	8
195	Functional characterization of the lysosomal membrane protein TMEM192 in mice. Oncotarget, 2017, 8, 43635-43652.	1.8	8
196	Intravitreal gene therapy restores the autophagy-lysosomal pathway and attenuates retinal degeneration in cathepsin D-deficient mice. Neurobiology of Disease, 2022, 164, 105628.	4.4	8
197	LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro. International Journal of Molecular Sciences, 2020, 21, 6110.	4.1	7
198	ADAM10-Mediated Ectodomain Shedding Is an Essential Driver of Podocyte Damage. Journal of the American Society of Nephrology: JASN, 2021, 32, 1389-1408.	6.1	7

#	Article	IF	CITATIONS
199	Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
200	Ectodomain shedding by ADAM proteases as a central regulator in kidney physiology and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119165.	4.1	6
201	Regulated intramembrane proteolysis—A story about sheddases and I-CliPs. Seminars in Cell and Developmental Biology, 2009, 20, 125.	5.0	5
202	S-palmitoylation determines TMEM55B-dependent positioning of lysosomes. Journal of Cell Science, 2022, 135, .	2.0	3
203	A09â€ADAM10 activity at the huntington's disease presynapse. , 2021, , .		1
204	ADAM10: Alzheimer a-Sekretase und neurobiologischer Regulator. E-Neuroforum, 2014, 20, 212-221.	0.1	0
205	Intracellular compartments of pathogens: Highways to hell or stairways to heaven?. International Journal of Medical Microbiology, 2018, 308, 1-2.	3.6	0