Chuanjia Jiang

List of Publications by Citations

Source: https://exaly.com/author-pdf/8443798/chuanjia-jiang-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

79	10,794	50	82
papers	citations	h-index	g-index
82 ext. papers	13,238 ext. citations	8.8 avg, IF	7.24 L-index

#	Paper	IF	Citations
79	g-C3N4-Based Heterostructured Photocatalysts. <i>Advanced Energy Materials</i> , 2018 , 8, 1701503	21.8	1245
78	Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 556-565	21.8	1114
77	Hierarchical Porous O-Doped g-C N with Enhanced Photocatalytic CO Reduction Activity. <i>Small</i> , 2017 , 13, 1603938	11	732
76	A Review of Direct Z-Scheme Photocatalysts. Small Methods, 2017, 1, 1700080	12.8	663
75	In Situ Irradiated X-Ray Photoelectron Spectroscopy Investigation on a Direct Z-Scheme TiO /CdS Composite Film Photocatalyst. <i>Advanced Materials</i> , 2019 , 31, e1802981	24	462
74	Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 368-380	21.8	362
73	First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2017 , 207, 27-34	21.8	306
72	Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. <i>Journal of Hazardous Materials</i> , 2017 , 321, 801-811	12.8	305
71	Constructing 2D/2D Fe2O3/g-C3N4 Direct Z-Scheme Photocatalysts with Enhanced H2 Generation Performance. <i>Solar Rrl</i> , 2018 , 2, 1800006	7.1	300
70	Hollow CoSx Polyhedrons Act as High-Efficiency Cocatalyst for Enhancing the Photocatalytic Hydrogen Generation of g-C3N4. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2767-2779	8.3	258
69	The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 147-155	21.8	246
68	Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	214
67	Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5020-5029	13	205
66	In situ hydrothermal synthesis of g-C 3 N 4 /TiO 2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. <i>Applied Surface Science</i> , 2017 , 411, 400-410	6.7	204
65	Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. <i>Journal of Colloid and Interface Science</i> , 2017 , 490, 242-251	9.3	195
64	Room-temperature in situ fabrication of Bi 2 O 3 /g-C 3 N 4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. <i>Applied Surface Science</i> , 2018 , 430, 273-282	6.7	173
63	Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. <i>Applied Surface Science</i> , 2018 , 434, 423-432	6.7	145

(2018-2017)

62	Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8635-8643	13	139
61	Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21257-21265	13	138
60	Synthesis of core-shell TiO 2 @g-C 3 N 4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light. <i>Applied Surface Science</i> , 2018 , 430, 263-272	6.7	137
59	Surface and interface engineering of hierarchical photocatalysts. <i>Applied Surface Science</i> , 2019 , 471, 43	- 85 .7	135
58	Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4. <i>Applied Surface Science</i> , 2018 , 433, 1175-1183	6.7	134
57	Review on design and evaluation of environmental photocatalysts. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	131
56	Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance. <i>Journal of Power Sources</i> , 2017 , 359, 371-378	8.9	127
55	Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water. <i>Journal of Colloid and Interface Science</i> , 2017 , 504, 688-696	9.3	125
54	Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	124
53	Adsorptive removal of an anionic dye Congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres. <i>Applied Surface Science</i> , 2018 , 435, 1136-1142	6.7	115
52	ZnO hierarchical microsphere for enhanced photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2018 , 741, 622-632	5.7	113
51	Enhanced visible-light photocatalytic H-generation activity of carbon/g-CN nanocomposites prepared by two-step thermal treatment. <i>Dalton Transactions</i> , 2017 , 46, 10611-10619	4.3	111
50	Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. <i>Building and Environment</i> , 2017 , 117, 118-126	6.5	109
49	Review on noble metal-based catalysts for formaldehyde oxidation at room temperature. <i>Applied Surface Science</i> , 2019 , 475, 237-255	6.7	103
48	Few-Layered Graphene-like Boron Nitride: A Highly Efficient Adsorbent for Indoor Formaldehyde Removal. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 20-25	11	101
47	Hierarchical honeycomb-like Pt/NiFe-LDH/rGO nanocomposite with excellent formaldehyde decomposition activity. <i>Chemical Engineering Journal</i> , 2019 , 365, 378-388	14.7	94
46	Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo red. Journal of Colloid and Interface Science, 2019, 537, 736-745	9.3	94
45	Fabrication of flower-like direct Z-scheme EBi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation. <i>Applied Surface Science</i> , 2018 , 436, 162-171	6.7	90

44	Co 3 O 4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. <i>Applied Surface Science</i> , 2017 , 404, 426-434	6.7	88
43	Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles. <i>Environmental Science & Environmental Science &</i>	10.3	80
42	Flexible nickel foam decorated with Pt/NiO nanoflakes with oxygen vacancies for enhanced catalytic formaldehyde oxidation at room temperature. <i>Environmental Science: Nano</i> , 2017 , 4, 2215-222	47.1	73
41	Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance. <i>Applied Surface Science</i> , 2017 , 426, 360-368	6.7	69
40	Construction of Z-scheme Ag2CO3/N-doped graphene photocatalysts with enhanced visible-light photocatalytic activity by tuning the nitrogen species. <i>Applied Surface Science</i> , 2017 , 396, 1368-1374	6.7	68
39	Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO 2 nanofiber composite at room temperature. <i>Applied Surface Science</i> , 2017 , 426, 333-341	6.7	64
38	The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 335-341	11.3	63
37	Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature. <i>Applied Surface Science</i> , 2018 , 441, 429-437	6.7	61
36	Pt/C@MnO2 composite hierarchical hollow microspheres for catalytic formaldehyde decomposition at room temperature. <i>Applied Surface Science</i> , 2019 , 466, 301-308	6.7	57
35	Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red. <i>Applied Surface Science</i> , 2018 , 435, 1002-1010	6.7	56
34	Enhanced room-temperature HCHO decomposition activity of highly-dispersed Pt/Al2O3 hierarchical microspheres with exposed {110} facets. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 45, 197-205	6.3	54
33	Chestnut husk-like nickel cobaltite hollow microspheres for the adsorption of Congo red. <i>Journal of Alloys and Compounds</i> , 2018 , 735, 1041-1051	5.7	53
32	First-principles investigation of Cu-doped ZnS with enhanced photocatalytic hydrogen production activity. <i>Chemical Physics Letters</i> , 2017 , 668, 1-6	2.5	51
31	Catalytic decomposition and mechanism of formaldehyde over Pt-AlO molecular sieves at room temperature. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 6957-6963	3.6	50
30	Effects of hierarchical structure on the performance of tin oxide-supported platinum catalyst for room-temperature formaldehyde oxidation. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 199-206	11.3	48
29	Hierarchical Pt/MnO2Ni(OH)2 Hybrid Nanoflakes with Enhanced Room-Temperature Formaldehyde Oxidation Activity. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 12481-12488	8.3	48
28	Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 2536-44	4.3	39
27	In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. <i>Environmental Science: Nano</i> , 2019 , 6, 1283-1302	7.1	38

(2020-2016)

26	Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. <i>Nanotoxicology</i> , 2016 , 10, 831-5	5.3	38	
25	Relative Contributions of Copper Oxide Nanoparticles and Dissolved Copper to Cu Uptake Kinetics of Gulf Killifish (Fundulus grandis) Embryos. <i>Environmental Science & Dissolved Copper to Cu Uptake Kinetics</i>	40 ^{1,0.3}	34	
24	Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. <i>Environmental Science: Nano</i> , 2018 , 5, 2500-2518	7.1	34	
23	Pollution level and seasonal variations of carbonyl compounds, aromatic hydrocarbons and TVOC in a furniture mall in Beijing, China. <i>Building and Environment</i> , 2013 , 69, 227-232	6.5	33	
22	Facile Synthesis of Activated Carbon-Supported Porous Manganese Oxide via in situ Reduction of Permanganate for Ozone Decomposition. <i>Ozone: Science and Engineering</i> , 2013 , 35, 308-315	2.4	29	
21	Hierarchical NiMn2O4/rGO composite nanosheets decorated with Pt for low-temperature formaldehyde oxidation. <i>Environmental Science: Nano</i> , 2020 , 7, 198-209	7.1	27	
20	Influence of light wavelength on the photoactivity, physicochemical transformation, and fate of graphene oxide in aqueous media. <i>Environmental Science: Nano</i> , 2018 , 5, 2590-2603	7.1	22	
19	Facet-dependent evolution of surface defects in anatase TiO2 by thermal treatment: implications for environmental applications of photocatalysis. <i>Environmental Science: Nano</i> , 2019 , 6, 1740-1753	7.1	21	
18	Enhanced Hydrolysis of -Nitrophenyl Phosphate by Iron (Hydr)oxide Nanoparticles: Roles of Exposed Facets. <i>Environmental Science & Exposed Facets</i> , 54, 8658-8667	10.3	20	
17	Facet-dependent generation of superoxide radical anions by ZnO nanomaterials under simulated solar light. <i>Environmental Science: Nano</i> , 2018 , 5, 2864-2875	7.1	17	
16	A Facile Synthesis of Ternary Nickel Iron Sulfide Nanospheres as Counter Electrode in Dye-Sensitized Solar Cells. <i>Chemistry - A European Journal</i> , 2018 , 24, 19032-19037	4.8	16	
15	Facile synthesis of three-dimensional Mn3O4 hierarchical microstructures for efficient catalytic phenol oxidation with peroxymonosulfate. <i>Applied Surface Science</i> , 2019 , 495, 143568	6.7	13	
14	Photochemical decomposition of 1H,1H,2H,2H-perfluorooctane sulfonate (6:2FTS) induced by ferric ions. <i>Journal of Environmental Sciences</i> , 2017 , 51, 120-127	6.4	12	
13	FcRIIB receptor-mediated apoptosis in macrophages through interplay of cadmium sulfide nanomaterials and protein corona. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 164, 140-148	7	10	
12	In situ synthesis of ternary nickel iron selenides with high performance applied in dye-sensitized solar cells. <i>Applied Surface Science</i> , 2019 , 492, 520-526	6.7	9	
11	Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors. <i>Frontiers of Environmental Science and Engineering</i> , 2012 , 6, 184-194	5.8	9	
10	Photolysis of graphene oxide in the presence of nitrate: implications for graphene oxide integrity in water and wastewater treatment. <i>Environmental Science: Nano</i> , 2019 , 6, 136-145	7.1	8	
9	Principle and surface science of photocatalysis. <i>Interface Science and Technology</i> , 2020 , 31, 1-38	2.3	7	

8	Enhanced hydrolysis of 1,1,2,2-tetrachloroethane by multi-walled carbon nanotube/TiO nanocomposites: The synergistic effect. <i>Environmental Pollution</i> , 2019 , 255, 113211	9.3	3
7	Substoichiometric titanium oxide TiO exhibits greater efficiency in enhancing hydrolysis of 1,1,2,2-tetrachloroethane than TiO nanomaterials. <i>Science of the Total Environment</i> , 2021 , 774, 145705	10.2	3
6	Effects of Silver Nanoparticles on Development, Behavior, and Mitochondrial Function are Altered by Genetic Defects in Mitochondrial Dynamics <i>Environmental Science & Environmental Science & Envir</i>	19: <u>3</u> 4	2
5	Sulfide and ferrous iron preferentially target specific surface O-functional groups of graphene oxide: implications for accumulation of contaminants. <i>Environmental Science: Nano</i> , 2020 , 7, 462-471	7.1	2
4	Nanostructured manganese oxides exhibit facet-dependent oxidation capabilities. <i>Environmental Science: Nano</i> , 2020 , 7, 3840-3848	7.1	2
3	Design and fabrication of direct Z-scheme photocatalysts. <i>Interface Science and Technology</i> , 2020 , 31, 193-229	2.3	1
2	Synergy between Platinum and Gold Nanoparticles in Oxygen Activation for Enhanced Room-Temperature Formaldehyde Oxidation. <i>Advanced Functional Materials</i> ,2110423	15.6	1
1	Key factors controlling colloids-bulk soil distribution of polybrominated diphenyl ethers (PBDEs) at an e-waste recycling site: Implications for PBDE mobility in subsurface environment <i>Science of the Total Environment</i> , 2022 , 819, 153080	10.2	О