Valentyn S Volkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443615/publications.pdf

Version: 2024-02-01

109264 66879 6,330 133 35 78 citations g-index h-index papers 137 137 137 5121 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440, 508-511.	13.7	2,058
2	Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves. Physical Review Letters, 2005, 95, 046802.	2.9	589
3	Optical constants and structural properties of thin gold films. Optics Express, 2017, 25, 25574.	1.7	265
4	Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Optics Express, 2008, 16, 5252.	1.7	182
5	Thermo-optic control of dielectric-loaded plasmonic waveguide components. Optics Express, 2010, 18, 1207.	1.7	169
6	Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons. Nano Letters, 2007, 7, 880-884.	4.5	168
7	Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nature Communications, 2021, 12, 854.	5.8	154
8	Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer. ACS Applied Materials & Linking Layer. ACS Applied & Linking Layer. ACS Ap	4.0	140
9	Nanofocusing with Channel Plasmon Polaritons. Nano Letters, 2009, 9, 1278-1282.	4.5	136
10	Broadband optical properties of monolayer and bulk MoS2. Npj 2D Materials and Applications, 2020, 4, .	3.9	112
11	Localization and Waveguiding of Surface Plasmon Polaritons in Random Nanostructures. Physical Review Letters, 2002, 89, 186801.	2.9	89
12	Ultralow-Loss CMOS Copper Plasmonic Waveguides. Nano Letters, 2016, 16, 362-366.	4.5	82
13	Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics. Physical Review B, 2002, 66, .	1.1	73
14	Bend loss in surface plasmon polariton band-gap structures. Applied Physics Letters, 2001, 79, 1076-1078.	1.5	71
15	Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. Optics Letters, 2011, 36, 4278.	1.7	68
16	Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Physical Review B, 2019, 100, .	1.1	67
17	Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas. Nano Letters, 2015, 15, 8148-8154.	4.5	65
18	Superior Sensitivity of Copper-Based Plasmonic Biosensors. Langmuir, 2018, 34, 4681-4687.	1.6	60

#	Article	IF	CITATIONS
19	Dielectricâ€loaded plasmonic waveguide components: Going practical. Laser and Photonics Reviews, 2013, 7, 938-951.	4.4	58
20	Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Science Advances, 2021, 7, .	4.7	53
21	Fiber-coupled dielectric-loaded plasmonic waveguides. Optics Express, 2010, 18, 5314.	1.7	52
22	Spectral ellipsometry of monolayer transition metal dichalcogenides: Analysis of excitonic peaks in dispersion. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	51
23	Magnetic Octupole Response of Dielectric Quadrumers. Laser and Photonics Reviews, 2020, 14, 1900331.	4.4	51
24	Compact gradual bends for channel plasmon polaritons. Optics Express, 2006, 14, 4494.	1.7	48
25	Planar refraction and lensing of highly confined polaritons in anisotropic media. Nature Communications, 2021, 12, 4325.	5.8	48
26	Computational Lens for the Near Field. Physical Review Letters, 2004, 92, 163903.	2.9	46
27	Direct Characterization of Plasmonic Slot Waveguides and Nanocouplers. Nano Letters, 2014, 14, 3925-3929.	4.5	46
28	Ultrathin and Ultrasmooth Gold Films on Monolayer MoS ₂ . Advanced Materials Interfaces, 2019, 6, 1900196.	1.9	45
29	Plasmonic metasurfaces for waveguiding and field enhancement. Laser and Photonics Reviews, 2009, 3, 575-590.	4.4	43
30	Topological phase singularities in atomically thin high-refractive-index materials. Nature Communications, 2022, 13, 2049.	5.8	43
31	Bianisotropy for light trapping in all-dielectric metasurfaces. Physical Review B, 2020, 101, .	1.1	42
32	Diffusion Limited Current Density: A Watershed in Electrodeposition of Lithium Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	42
33	Bend loss for channel plasmon polaritons. Applied Physics Letters, 2006, 89, 143108.	1.5	40
34	Express determination of thickness and dielectric function of single-walled carbon nanotube films. Applied Physics Letters, 2020, 116, .	1.5	40
35	Directly grown crystalline gallium phosphide on sapphire for nonlinear all-dielectric nanophotonics. Applied Physics Letters, 2021, 118, .	1.5	37
36	Active Tuning of Highly Anisotropic Phonon Polaritons in Van der Waals Crystal Slabs by Gated Graphene. ACS Photonics, 2022, 9, 383-390.	3.2	37

#	Article	IF	CITATIONS
37	Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Science Advances, 2021, 7, eabj0127.	4.7	36
38	Channel plasmon polariton propagation in nanoimprinted V-groove waveguides. Optics Letters, 2008, 33, 2800.	1.7	34
39	Synthesis of Large Area Two-Dimensional MoS ₂ Films by Sulfurization of Atomic Layer Deposited MoO ₃ Thin Film for Nanoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 7521-7531.	2.4	34
40	Multiple-scattering dipole approach to modeling of surface plasmon polariton band gap structures. Optics Communications, 2001, 198, 241-245.	1.0	33
41	Channelling surface plasmons. Applied Physics A: Materials Science and Processing, 2007, 89, 225-231.	1.1	30
42	Nonlinear Excitonâ€Mie Coupling in Transition Metal Dichalcogenide Nanoresonators. Laser and Photonics Reviews, 2022, 16, .	4.4	29
43	Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface. Optics Letters, 2001, 26, 734.	1.7	28
44	Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications. Nanomaterials, 2021, 11, 1230.	1.9	26
45	Direct mapping of light propagation in photonic crystal waveguides. Optics Communications, 2002, 212, 51-55.	1.0	25
46	Fractal Shaped Periodic Metal Nanostructures Atop Dielectric-Metal Substrates for SERS Applications. ACS Photonics, 2020, 7, 1708-1715.	3.2	25
47	Vertically Coupled Plasmonic Racetrack Ring Resonator for Biosensor Applications. Sensors, 2020, 20, 203.	2.1	23
48	Plasmonic nanojet: an experimental demonstration. Optics Letters, 2020, 45, 3244.	1.7	23
49	Microextrusion printing of gas-sensitive planar anisotropic NiO nanostructures and their surface modification in an H2S atmosphere. Applied Surface Science, 2022, 578, 151984.	3.1	23
50	Near-field imaging of organic nanofibres. Journal of Microscopy, 2004, 215, 241-244.	0.8	21
51	Near-field characterization of low-loss photonic crystal waveguides. Physical Review B, 2005, 72, .	1.1	21
52	Directional coupling in channel plasmon-polariton waveguides. Optics Express, 2012, 20, 6124.	1.7	21
53	Direct Observation of Surface Mode Excitation and Slow Light Coupling in Photonic Crystal Waveguides. Nano Letters, 2007, 7, 2341-2345.	4.5	19
54	Dispersion of strongly confined channel plasmon polariton modes. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1596.	0.9	19

#	Article	IF	Citations
55	Gas-Aggregated Copper Nanoparticles with Long-term Plasmon Resonance Stability. Plasmonics, 2021, 16, 333-340.	1.8	19
56	Experimental studies of surface plasmon polariton band gap effect. Journal of Microscopy, 2003, 210, 324-329.	0.8	18
57	Optical constant of thin gold films: Structural morphology determined optical response. AIP Conference Proceedings, 2017, , .	0.3	17
58	Surface-Enhanced Raman Spectroscopy on Hybrid Graphene/Gold Substrates near the Percolation Threshold. Nanomaterials, 2020, 10, 164.	1.9	17
59	Optical Constants and Structural Properties of Epitaxial MoS2 Monolayers. Nanomaterials, 2021, 11, 1411.	1.9	17
60	Graphene-Supported Thin Metal Films for Nanophotonics and Optoelectronics. Nanomaterials, 2018, 8, 1058.	1.9	16
61	Development of ultra-sensitive broadband photodetector: a detailed study on hidden photodetection-properties of TiS2 nanosheets. Journal of Materials Research and Technology, 2021, 14, 1243-1254.	2.6	16
62	Thickness-Dependent Structural and Electrical Properties of WS ₂ Nanosheets Obtained via the ALD-Grown WO ₃ Sulfurization Technique as a Channel Material for Field-Effect Transistors. ACS Omega, 2021, 6, 34429-34437.	1.6	16
63	Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons. New Journal of Physics, 2009, 11, 113043.	1.2	15
64	Densification of single-walled carbon nanotube films: Mesoscopic distinct element method simulations and experimental validation. Journal of Applied Physics, 2020, 128, .	1.1	15
65	Broadband Optical Properties of Atomically Thin PtS2 and PtSe2. Nanomaterials, 2021, 11, 3269.	1.9	13
66	Experimental verification of a plasmonic hook in a dielectric Janus particle. Applied Physics Letters, 2021, 118, 131107.	1.5	12
67	Nanofocusing of acoustic graphene plasmon polaritons for enhancing mid-infrared molecular fingerprints. Nanophotonics, 2020, 9, 2089-2095.	2.9	12
68	Quasitrapped modes in metasurfaces of anisotropic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>:mn</td><td>nl:msub></td></mml:mn></mml:msub></mml:math>	:mn	nl:msub>
69	Surface plasmon polariton propagation along a 90° bent line defect in a periodically corrugated metal surface. Optics Communications, 2001, 196, 41-45.	1.0	11
70	Nonlinear plasmonic switching in graphene-based stub nanoresonator loaded with core-shell nanowire. Applied Surface Science, 2020, 506, 144814.	3.1	11
71	Investigation of structural and optical properties of MAPbBr ₃ monocrystals under fast electron irradiation. Journal of Materials Chemistry C, 2022, 10, 5821-5828.	2.7	11
72	Broadband Optical Constants and Nonlinear Properties of SnS2 and SnSe2. Nanomaterials, 2022, 12, 141.	1.9	11

#	Article	IF	Citations
73	Near-field mapping of surface refractive-index distributions. Laser Physics Letters, 2005, 2, 440-444.	0.6	10
74	Application of Pulsed Laser Deposition in the Preparation of a Promising MoSx/WSe2/C(Đ') Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution. Nanomaterials, 2021, 11, 1461.	1.9	10
75	Detection of Hypertension-Induced Changes in Erythrocytes by SERS Nanosensors. Biosensors, 2022, 12, 32.	2.3	10
76	Two Birds with One Stone: Using Indium Oxide Surficial Modification to Tune Inner Helmholtz Plane and Regulate Nucleation for Dendriteâ€free Lithium Anode. Small Methods, 2022, 6, e2200113.	4.6	10
77	Nanofocusing in circular sector-like nanoantennas. Optics Express, 2014, 22, 10341.	1.7	9
78	Surface plasmon polariton waveguiding in random surface nanostructures. Journal of Microscopy, 2003, 209, 209-213.	0.8	8
79	Near-field characterization of planar photonic-crystal-waveguide structures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 757-769.	1.6	8
80	Directional coupling in long-range dielectric-loaded plasmonic waveguides. Optics Express, 2013, 21, 8799.	1.7	8
81	Hybrid Schemes for Excitation of Collective Resonances with Surface Plasmon Polaritons in Arrays of Quantum Dots in the Proximity of Graphene. Laser and Photonics Reviews, 2020, 14, 2000237.	4.4	8
82	Silicone Composites with CNT/Graphene Hybrid Fillers: A Review. Materials, 2021, 14, 2418.	1.3	8
83	Hybrid Metal-Dielectric-Metal Sandwiches for SERS Applications. Nanomaterials, 2021, 11, 3205.	1.9	8
84	Synthesis of highly sensitive nanomaterial for ultra-fast photocatalytic activity: A detailed study on photocatalytic capabilities of rod-shaped TiS3 nanostructures. Catalysis Communications, 2022, 162, 106381.	1.6	8
85	Near-field imaging of light diffraction out of slab waveguides. Laser Physics Letters, 2004, 1, 311-316.	0.6	7
86	Novel graphene-oxide-coated SPR interfaces for biosensing applications. AIP Conference Proceedings, 2017, , .	0.3	7
87	Hybrid graphene-nanometallic structures. Journal of Physics: Conference Series, 2018, 1092, 012161.	0.3	7
88	All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters. Nanomaterials, 2020, 10, 122.	1.9	7
89	Halloysite Nanotubes with Immobilized Plasmonic Nanoparticles for Biophotonic Applications. Applied Sciences (Switzerland), 2021, 11, 4565.	1.3	7
90	Peculiarities and evolution of Raman spectra of multilayer Ge/Si(001) heterostructures containing arrays of lowâ€temperature MBEâ€grown Ge quantum dots of different size and number density: Experimental studies and numerical simulations. Journal of Raman Spectroscopy, 2022, 53, 853-862.	1.2	7

#	Article	IF	CITATIONS
91	Nanoscale Gallium Phosphide Epilayers on Sapphire for Low-Loss Visible Nanophotonics. ACS Applied Nano Materials, 2022, 5, 8846-8858.	2.4	7
92	Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs. Nanomaterials, 2021, 11, 1143.	1.9	6
93	Local excitation of surface plasmon polaritons in random surface nanostructures. Optics Communications, 2003, 223, 25-29.	1.0	5
94	Near-field probing of photonic crystal directional couplers. Laser Physics Letters, 2006, 3, 288-292.	0.6	5
95	Morphology and effective dielectric functions of ultra-thin gold films. Journal of Physics: Conference Series, 2018, 1092, 012167.	0.3	5
96	Controllable Excitation of Surface Plasmon Polaritons in Grapheneâ€Based Semiconductor Quantum Dot Waveguides. Annalen Der Physik, 0, , 2100139.	0.9	5
97	Comparison of CVD-grown and exfoliated graphene for biosensing applications. AIP Conference Proceedings, 2021, , .	0.3	5
98	Graphene oxide linking layers for highly sensitive SPR biosensing of small molecules. Materials Today: Proceedings, 2018, 5, 17437-17441.	0.9	4
99	SPR analysis of antibody-antigen interactions using graphene oxide linking layers. Materials Today: Proceedings, 2018, 5, 17442-17446.	0.9	4
100	The formation of intermediate layers in covered Ge/Si heterostructures with low-temperature quantum dots: a study using high-resolution transmission electron microscopy and Raman spectroscopy. Semiconductor Science and Technology, 2020, 35, 045012.	1.0	4
101	Spectroscopic ellipsometry of large area monolayer WS2 and WSe2 films. AIP Conference Proceedings, 2021, , .	0.3	4
102	Topography characterization of a deep grating using near-field imaging. Applied Optics, 2006, 45, 117.	2.1	3
103	Optical properties of thin graphene oxide films and their biosensing applications. Journal of Physics: Conference Series, 2020, 1461, 012068.	0.3	3
104	CHAPTER 12. Chemically Derived Graphene for Surface Plasmon Resonance Biosensing. RSC Nanoscience and Nanotechnology, 2018, , 328-353.	0.2	3
105	Near-field characterization of photonic crystal Y-splitters. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 4087-4092.	0.8	2
106	Coherent optical effects in two-dimensional nanostructures with semiconductor quantum dots. EPJ Web of Conferences, 2019, 220, 02010.	0.1	2
107	Near-field characterization of ultra-thin metal films. Journal of Physics: Conference Series, 2020, 1461, 012193.	0.3	2
108	Photogating in graphene field-effect phototransistors: Theory and observations. AIP Conference Proceedings, 2021, , .	0.3	2

#	Article	IF	Citations
109	UV/Ozone Treatment and Open-Air Copper Plasmonics. Journal of Physics: Conference Series, 2021, 2015, 012148.	0.3	2
110	Near-field microscopy of light propagation in photonic crystal waveguides., 2003, 5118, 515.		1
111	Defect profiles in graded band-gap layers of P-HgCdTe heteroepitaxial structures under ion-beam etching. Russian Physics Journal, 2008, 51, 936-942.	0.2	1
112	Waveguide-ring resonator-based photonic components utilizing channel plasmon polaritons., 2008,,.		1
113	Integrated plasmonic biosensors based on microring resonators. Journal of Physics: Conference Series, 2018, 1092, 012162.	0.3	1
114	Influence of the crystalline structure of metal films on the performance of plasmonic biosensors. Journal of Physics: Conference Series, 2018, 1092, 012143.	0.3	1
115	Substrate effects in graphene field-effect transistor photodetectors. Journal of Physics: Conference Series, 2020, 1461, 012188.	0.3	1
116	Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits. , 0, , .		0
117	Near-field imaging of out-of-plane light scattering in photonic crystal slabs. , 2003, , .		0
118	Near-field characterization of photonic crystal components. , 0, , .		0
119	Mapping of surface refractive-index distribution by reflection SNOM. , 2005, , .		0
120	Fabrication of plasmonic waveguides by nanoimprint and UV lithography. Proceedings of SPIE, 2008, , .	0.8	0
121	Nanophotonic components utilizing channel plasmon polaritons. Proceedings of SPIE, 2008, , .	0.8	0
122	Plasmonic Antennas Nanocoupler for Telecom Range: Simulation, Fabrication and Near-Field Characterization. , 2014, , .		0
123	Optical nano-antennae as compact and efficient couplers from free-space to waveguide modes. , 2015, , .		0
124	Design, fabrication and SNOM investigation of plasmonic devices. , 2016, , .		0
125	Ultralow-loss CMOS copper plasmonic platform. , 2017, , .		0
126	Ultra-thin gold films: towards 2D metals for photonic and optoelectronic applications. Journal of Physics: Conference Series, 2020, 1461, 012184.	0.3	0

#	Article	IF	CITATIONS
127	Reversible plasmonic switching in a graphene nanoresonator loaded with a core – shell quantum dot. Quantum Electronics, 2020, 50, 976-983.	0.3	O
128	Comparative analysis of optical properties of CVD graphene and graphite via spectroscopic ellipsometry. AIP Conference Proceedings, 2021, , .	0.3	0
129	Optical light confinement in terahertz antennas. AIP Conference Proceedings, 2021, , .	0.3	O
130	The generation of surface plasmon-polaritons by using hybrid opto-plasmonic scheme with quantum dots in the proximity of graphene. AIP Conference Proceedings, 2021, , .	0.3	0
131	Plasmonic metasurfaces for probing two-dimensional materials. AIP Conference Proceedings, 2021, , .	0.3	O
132	Surface-enhanced raman spectroscopy on ultrathin gold/graphene substrates near the percolation threshold. AIP Conference Proceedings, 2021, , .	0.3	0
133	Tungsten disulfide nanoparticles produced by femtosecond laser ablation in water for nanophotonic applications. Journal of Physics: Conference Series, 2021, 2015, 012155.	0.3	0