Zhijun Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443611/publications.pdf

Version: 2024-02-01

331670 642732 2,033 23 21 23 citations h-index g-index papers 26 26 26 2377 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immune Response to Silk Sericin–Fibroin Composites: Potential Immunogenic Elements and Alternatives for Immunomodulation. Macromolecular Bioscience, 2022, 22, e2100292.	4.1	29
2	Hierarchical-structured bacterial cellulose/potato starch tubes as potential small-diameter vascular grafts. Carbohydrate Polymers, 2022, 281, 119034.	10.2	25
3	A Biodegradable and Recyclable Piezoelectric Sensor Based on a Molecular Ferroelectric Embedded in a Bacterial Cellulose Hydrogel. ACS Nano, 2022, 16, 3744-3755.	14.6	68
4	Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator. Nano-Micro Letters, 2022, 14, 115.	27.0	74
5	Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Advanced Composites and Hybrid Materials, 2022, 5, 2847-2872.	21.1	40
6	Bacterial cellulose: Molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties. Progress in Materials Science, 2022, 129, 100972.	32.8	71
7	In Situ Synthesized Selenium Nanoparticlesâ€Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Antiâ€Inflammatory Capabilities for Facilitating Skin Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100402.	7.6	149
8	The impact of ExHp-CD (outer membrane vesicles) released from Helicobacter pylori SS1 on macrophage RAW 264.7 cells and their immunogenic potential. Life Sciences, 2021, 279, 119644.	4.3	12
9	Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy, 2021, 89, 106354.	16.0	84
10	Synergistic effect of highly aligned bacterial cellulose/gelatin membranes and electrical stimulation on directional cell migration for accelerated wound healing. Chemical Engineering Journal, 2021, 424, 130563.	12.7	91
11	Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydrate Polymers, 2021, 273, 118565.	10.2	67
12	Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels. Carbohydrate Polymers, 2020, 249, 116829.	10.2	78
13	Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti ₃ C ₂ T <i>_X</i>) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation. Advanced Healthcare Materials, 2020, 9. e2000872.	7.6	184
14	Multifunctional piezoelectric elastomer composites for smart biomedical or wearable electronics. Composites Part B: Engineering, 2019, 160, 595-604.	12.0	29
15	Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Advanced Composites and Hybrid Materials, 2018, 1, 79-93.	21.1	21
16	Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydrate Polymers, 2017, 163, 62-69.	10.2	124
17	Self-powered hydrogels induced by ion transport. Nanoscale, 2017, 9, 17080-17090.	5.6	17

A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl) Tj ETQq0 0 0 rgBT /Overlock 10 $_{1.5}^{\text{ff}}$ 50 62 Td $_{1.5}^{\text{ff}}$

Zhijun Shi

#	Article	IF	CITATIONS
19	Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.	11.4	287
20	Microbial Cells with a Fe ₃ O ₄ Doped Hydrogel Extracellular Matrix: Manipulation of Living Cells by Magnetic Stimulus. Macromolecular Bioscience, 2016, 16, 1506-1514.	4.1	25
21	Double network bacterial cellulose hydrogel to build a biology–device interface. Nanoscale, 2014, 6, 970-977.	5.6	7 5
22	Nanocellulose electroconductive composites. Nanoscale, 2013, 5, 3194.	5.6	213
23	In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Advances, 2012, 2, 1040-1046.	3.6	157