
Zhijun Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443611/publications.pdf Version: 2024-02-01

7нши Сні

#	Article	IF	CITATIONS
1	Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.	11.4	287
2	Nanocellulose electroconductive composites. Nanoscale, 2013, 5, 3194.	5.6	213
3	Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti ₃ C ₂ T <i>_x</i>) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation. Advanced Healthcare Materials, 2020, 9. e2000872.	7.6	184
4	In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Advances, 2012, 2, 1040-1046.	3.6	157
5	In Situ Synthesized Selenium Nanoparticlesâ€Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Antiâ€Inflammatory Capabilities for Facilitating Skin Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100402.	7.6	149
6	Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydrate Polymers, 2017, 163, 62-69.	10.2	124
7	A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl) Tj ETQq1 1 0.78431	.4 rgBT /O	verlock 10 113
8	Synergistic effect of highly aligned bacterial cellulose/gelatin membranes and electrical stimulation on directional cell migration for accelerated wound healing. Chemical Engineering Journal, 2021, 424, 130563.	12.7	91
9	Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy, 2021, 89, 106354.	16.0	84
10	Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels. Carbohydrate Polymers, 2020, 249, 116829.	10.2	78
11	Double network bacterial cellulose hydrogel to build a biology–device interface. Nanoscale, 2014, 6, 970-977.	5.6	75
12	Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator. Nano-Micro Letters, 2022, 14, 115.	27.0	74
13	Bacterial cellulose: Molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties. Progress in Materials Science, 2022, 129, 100972.	32.8	71
14	A Biodegradable and Recyclable Piezoelectric Sensor Based on a Molecular Ferroelectric Embedded in a Bacterial Cellulose Hydrogel. ACS Nano, 2022, 16, 3744-3755.	14.6	68
15	Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydrate Polymers, 2021, 273, 118565.	10.2	67
16	Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Advanced Composites and Hybrid Materials, 2022, 5, 2847-2872.	21.1	40
17	Multifunctional piezoelectric elastomer composites for smart biomedical or wearable electronics. Composites Part B: Engineering, 2019, 160, 595-604.	12.0	29
18	Immune Response to Silk Sericin–Fibroin Composites: Potential Immunogenic Elements and Alternatives for Immunomodulation. Macromolecular Bioscience, 2022, 22, e2100292.	4.1	29

Zhijun Shi

#	Article	IF	CITATIONS
19	Microbial Cells with a Fe ₃ O ₄ Doped Hydrogel Extracellular Matrix: Manipulation of Living Cells by Magnetic Stimulus. Macromolecular Bioscience, 2016, 16, 1506-1514.	4.1	25
20	Hierarchical-structured bacterial cellulose/potato starch tubes as potential small-diameter vascular grafts. Carbohydrate Polymers, 2022, 281, 119034.	10.2	25
21	Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Advanced Composites and Hybrid Materials, 2018, 1, 79-93.	21.1	21
22	Self-powered hydrogels induced by ion transport. Nanoscale, 2017, 9, 17080-17090.	5.6	17
23	The impact of ExHp-CD (outer membrane vesicles) released from Helicobacter pylori SS1 on macrophage RAW 264.7 cells and their immunogenic potential. Life Sciences, 2021, 279, 119644.	4.3	12