
Jordi Paps

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012, 490, 49-54.	13.7	1,966
2	The genomes of four tapeworm species reveal adaptations to parasitism. Nature, 2013, 496, 57-63.	13.7	603
3	A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11246-11251.	3.3	229
4	Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains. Molecular Biology and Evolution, 2012, 29, 531-544.	3.5	166
5	The phylogenetic position of ctenophores and the origin(s) of nervous systems. EvoDevo, 2015, 6, 1.	1.3	148
6	Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1245-1254.	1.2	103
7	Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nature Communications, 2018, 9, 1730.	5.8	101
8	Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evolutionary Biology, 2014, 14, 3.	3.2	92
9	Molecular Phylogeny of Unikonts: New Insights into the Position of Apusomonads and Ancyromonads and ancyromonads and the Internal Relationships of Opisthokonts. Protist, 2013, 164, 2-12.	0.6	91
10	Bilaterian Phylogeny: A Broad Sampling of 13 Nuclear Genes Provides a New Lophotrochozoa Phylogeny and Supports a Paraphyletic Basal Acoelomorpha. Molecular Biology and Evolution, 2009, 26, 2397-2406.	3.5	90
11	New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150480.	1.8	90
12	Widespread patterns of gene loss in the evolution of the animal kingdom. Nature Ecology and Evolution, 2020, 4, 519-523.	3.4	89
13	The Origin of Land Plants Is Rooted in Two Bursts of Genomic Novelty. Current Biology, 2020, 30, 530-536.e2.	1.8	88
14	SMG-1 and mTORC1 Act Antagonistically to Regulate Response to Injury and Growth in Planarians. PLoS Genetics, 2012, 8, e1002619.	1.5	82
15	Back in time: a new systematic proposal for the Bilateria. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1481-1491.	1.8	79
16	The evolutionary emergence of land plants. Current Biology, 2021, 31, R1281-R1298.	1.8	67
17	Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13331-13336.	3.3	60
18	Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nature Communications, 2020, 11, 2631.	5.8	57

Jordi Paps

#	Article	IF	CITATIONS
19	Evolutionary history of the Tricladida and the Platyhelminthes: an up-to-date phylogenetic and systematic account. International Journal of Developmental Biology, 2012, 56, 5-17.	0.3	55
20	Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates. Nature Ecology and Evolution, 2018, 2, 859-866.	3.4	55
21	Reinforcing the Egg-Timer: Recruitment of Novel Lophotrochozoa Homeobox Genes to Early and Late Development in the Pacific Oyster. Genome Biology and Evolution, 2015, 7, 677-688.	1.1	42
22	Hox and ParaHox genes in Nemertodermatida, a basal bilaterian clade. International Journal of Developmental Biology, 2006, 50, 675-679.	0.3	40
23	A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?. Briefings in Functional Genomics, 2012, 11, 177-186.	1.3	36
24	Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity. Scientific Reports, 2018, 8, 9106.	1.6	34
25	Acoelomorpha: earliest branching bilaterians or deuterostomes?. Organisms Diversity and Evolution, 2016, 16, 391-399.	0.7	26
26	Novel and divergent genes in the evolution of placental mammals. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171357.	1.2	23
27	A cytosolic copper storage protein provides a second level of copper tolerance in <i>Streptomyces lividans</i> . Metallomics, 2018, 10, 180-193.	1.0	23
28	Plant Evolution: Assembling Land Plants. Current Biology, 2020, 30, R81-R83.	1.8	21
29	Waterâ€related innovations in land plants evolved by different patterns of gene cooption and novelty. New Phytologist, 2022, 235, 732-742.	3.5	18
30	The phylogenetic utility and functional constraint of microRNA flanking sequences. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142983.	1.2	17
31	Molecular phylogeny of the phylum Gastrotricha: New data brings together molecules and morphology. Molecular Phylogenetics and Evolution, 2012, 63, 208-212.	1.2	16
32	Expression of the Pupal Determinant broad during Metamorphic and Neotenic Development of the Strepsipteran Xenos vesparum Rossi. PLoS ONE, 2014, 9, e93614.	1,1	15
33	What Makes an Animal? The Molecular Quest for the Origin of the Animal Kingdom. Integrative and Comparative Biology, 2018, 58, 654-665.	0.9	15
34	One fold, two functions: cytochrome P460 and cytochrome <i>c</i> ′-β from the methanotroph <i>Methylococcus capsulatus</i> (Bath). Chemical Science, 2019, 10, 3031-3041.	3.7	13
35	Evolutionary Origins of Drought Tolerance in Spermatophytes. Frontiers in Plant Science, 2021, 12, 655924.	1.7	13
36	Discovery and Classification of Homeobox Genes in Animal Genomes. Methods in Molecular Biology, 2014, 1196, 3-18.	0.4	4

#	Article	IF	CITATIONS
37	Unravelling body plan and axial evolution in the Bilateria with molecular phylogenetic markers. , 0, , 217-238.		2
38	Evolution: How Animals Come of Age. Current Biology, 2021, 31, R30-R32.	1.8	0