
Dorothea Tholl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8443374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The family of terpene synthases in plants: a midâ€size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant Journal, 2011, 66, 212-229.	5.7	1,068
2	Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, 2006, 9, 297-304.	7.1	684
3	Practical approaches to plant volatile analysis. Plant Journal, 2006, 45, 540-560.	5.7	494
4	Methyl Jasmonate Induces Traumatic Resin Ducts, Terpenoid Resin Biosynthesis, and Terpenoid Accumulation in Developing Xylem of Norway Spruce Stems. Plant Physiology, 2002, 129, 1003-1018.	4.8	462
5	Biosynthesis and Biological Functions of Terpenoids in Plants. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 63-106.	1.1	446
6	The major volatile organic compound emitted from <i>Arabidopsis thaliana</i> flowers, the sesquiterpene (<i>E</i>)â€Î²â€€aryophyllene, is a defense against a bacterial pathogen. New Phytologist, 2012, 193, 997-1008.	7.3	408
7	Biosynthesis and Emission of Terpenoid Volatiles from Arabidopsis Flowers. Plant Cell, 2003, 15, 481-494.	6.6	381
8	Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant Journal, 2005, 42, 757-771.	5.7	314
9	An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant Journal, 2003, 36, 577-588.	5.7	278
10	Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. Journal of Chemical Ecology, 2013, 39, 810-825.	1.8	209
11	Characterization of a Root-Specific Arabidopsis Terpene Synthase Responsible for the Formation of the Volatile Monoterpene 1,8-Cineole. Plant Physiology, 2004, 135, 1956-1966.	4.8	207
12	A Regulatory Network for Coordinated Flower Maturation. PLoS Genetics, 2012, 8, e1002506.	3.5	204
13	Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9559-9564.	7.1	193
14	Small molecules belowâ€ground: the role of specialized metabolites in the rhizosphere. Plant Journal, 2017, 90, 788-807.	5.7	193
15	The Arabidopsis vacuolar sugar transporter <scp>SWEET</scp> 2 limits carbon sequestration from roots and restricts <i>Pythium</i> infection. Plant Journal, 2015, 83, 1046-1058.	5.7	184
16	Terpene Specialized Metabolism in <i>Arabidopsis thaliana</i> . The Arabidopsis Book, 2011, 9, e0143.	0.5	170
17	Formation of Monoterpenes in Antirrhinum majus and Clarkia breweri Flowers Involves Heterodimeric Geranyl Diphosphate Synthases. Plant Cell, 2004, 16, 977-992.	6.6	162
18	Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21205-21210.	7.1	152

#	Article	IF	CITATIONS
19	Identification and Regulation of TPSO4/GES, an <i>Arabidopsis</i> Geranyllinalool Synthase Catalyzing the First Step in the Formation of the Insect-Induced Volatile C16-Homoterpene TMTT. Plant Cell, 2008, 20, 1152-1168.	6.6	136
20	Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPSO2 and TPSO3 Â Â. Plant Physiology, 2010, 153, 1293-1310.	4.8	131
21	Formation of the Unusual Semivolatile Diterpene Rhizathalene by the <i>Arabidopsis</i> Class I Terpene Synthase TPS08 in the Root Stele Is Involved in Defense against Belowground Herbivory. Plant Cell, 2013, 25, 1108-1125.	6.6	123
22	<i>cis</i> - and <i>trans</i> -Regulation of miR163 and Target Genes Confers Natural Variation of Secondary Metabolites in Two <i>Arabidopsis</i> Species and Their Allopolyploids Â. Plant Cell, 2011, 23, 1729-1740.	6.6	121
23	The biochemistry of homoterpenes – Common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry, 2011, 72, 1635-1646.	2.9	104
24	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	7.3	101
25	Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. New Phytologist, 2019, 223, 52-67.	7.3	90
26	Trends and applications in plant volatile sampling and analysis. Plant Journal, 2021, 106, 314-325.	5.7	83
27	In Planta Variation of Volatile Biosynthesis: An Alternative Biosynthetic Route to the Formation of the Pathogen-Induced Volatile Homoterpene DMNT via Triterpene Degradation in Arabidopsis Roots. Plant Cell, 2015, 27, 874-890.	6.6	64
28	Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (<i>Daucus carota</i> L.) Roots. Journal of Agricultural and Food Chemistry, 2015, 63, 4870-4878.	5.2	58
29	Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different Arabidopsis ecotypes. Plant Journal, 2011, 66, 591-602.	5.7	56
30	Partial Purification and Characterization of the Short-Chain Prenyltransferases, Geranyl Diphosphate Synthase and Farnesyl Diphosphate Synthase, from Abies grandis (Grand Fir). Archives of Biochemistry and Biophysics, 2001, 386, 233-242.	3.0	53
31	Functional Diversity of Diterpene Synthases in the Biofuel Crop Switchgrass. Plant Physiology, 2018, 178, 54-71.	4.8	44
32	Biosynthesis and Emission of Stress-Induced Volatile Terpenes in Roots and Leaves of Switchgrass (Panicum virgatum L.). Frontiers in Plant Science, 2019, 10, 1144.	3.6	44
33	Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta, 2009, 230, 1-11.	3.2	43
34	Formation of Norisoprenoid Flavor Compounds in Carrot (Daucus carota L.) Roots: Characterization of a Cyclic-Specific Carotenoid Cleavage Dioxygenase 1 Gene. Journal of Agricultural and Food Chemistry, 2013, 61, 12244-12252.	5.2	43
35	De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8634-E8641.	7.1	43
36	Purification, Molecular Cloning and Expression in Escherichia coli of Homospermidine Synthase from Rhodopseudomonas viridis. FEBS Journal, 1996, 240, 373-379.	0.2	38

DOROTHEA THOLL

2

#	Article	IF	CITATIONS
37	An IDS-Type Sesquiterpene Synthase Produces the Pheromone Precursor (Z)-α-Bisabolene in Nezara viridula. Journal of Chemical Ecology, 2019, 45, 187-197.	1.8	30
38	Identification of a Dolabellane Type Diterpene Synthase and other Root-Expressed Diterpene Synthases in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1761.	3.6	24
39	Formation and exudation of non-volatile products of the arabidiol triterpenoid degradation pathway in <i>Arabidopsis</i> roots. Plant Signaling and Behavior, 2017, 12, e1265722.	2.4	20
40	A Transcriptome Survey Spanning Life Stages and Sexes of the Harlequin Bug, Murgantia histrionica. Insects, 2017, 8, 55.	2.2	20
41	The flowering of a new scent pathway in rose. Science, 2015, 349, 28-29.	12.6	18
42	Homospermidine synthase of Rhodopseudomonas viridis: Substrate specificity and effects of the heterologously expressed enzyme on polyamine metabolism of Escherichia coli Journal of General and Applied Microbiology, 1996, 42, 411-419.	0.7	17
43	Small molecules: from structural diversity to signalling and regulatory roles. Plant Journal, 2014, 79, 541-543.	5.7	5
44	Carrot Volatile Terpene Metabolism: Terpene Diversity and Biosynthetic Genes. Compendium of Plant Genomes, 2019, , 279-293.	0.5	5
45	Exciting times in plant biotic interactions. Plant Cell, 2022, 34, 1421-1424.	6.6	3

Biosynthesis of terpene pheromones in hemiptera/stink bugs. , 2021, , 269-284.