Mohammad Hossein Heydari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/844270/publications.pdf

Version: 2024-02-01

126907 206112 135 3,246 33 48 g-index citations h-index papers 135 135 135 1042 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Highly accurate solutions for space–time fractional Schr¶dinger equations with non-smooth continuous solution using the hybrid clique functions. Mathematical Sciences, 2023, 17, 31-42.	1.7	7
2	Orthonormal piecewise Bernoulli functions: Application for optimal control problems generated using fractional integro-differential equations. JVC/Journal of Vibration and Control, 2023, 29, 1164-1175.	2.6	9
3	A numerical method for nonlinear fractional reaction–advection–diffusion equation with piecewise fractional derivative. Mathematical Sciences, 2023, 17, 169-181.	1.7	7
4	Numerical solution of variable-order space-time fractional KdV–Burgers–Kuramoto equation by using discrete Legendre polynomials. Engineering With Computers, 2022, 38, 859-869.	6.1	11
5	Chebyshev–Gauss–Lobatto collocation method for variable-order time fractional generalized Hirota–Satsuma coupled KdV system. Engineering With Computers, 2022, 38, 1835-1844.	6.1	13
6	Numerical study of non-singular variable-order time fractional coupled Burgers' equations by using the Hahn polynomials. Engineering With Computers, 2022, 38, 101-110.	6.1	15
7	Orthonormal Bernoulli polynomials for space–time fractal-fractional modified Benjamin–Bona–Mahony type equations. Engineering With Computers, 2022, 38, 3483-3496.	6.1	5
8	An optimization method based on the Legendre wavelets for 3D rotating, squeezing and stretching magnetohydrodymanic flow in a channel with porous wall. Engineering With Computers, 2022, 38, 2583-2592.	6.1	3
9	A new class of orthonormal basis functions: application for fractional optimal control problems. International Journal of Systems Science, 2022, 53, 240-252.	5.5	9
10	Vieta–Fibonacci wavelets: Application in solving fractional pantograph equations. Mathematical Methods in the Applied Sciences, 2022, 45, 411-422.	2.3	8
11	Jacobi spectral method for variable-order fractional Benney–Lin equation arising in falling film problems. Journal of Computational and Applied Mathematics, 2022, 402, 113813.	2.0	6
12	Extended Chebyshev cardinal wavelets for nonlinear fractional delay optimal control problems. International Journal of Systems Science, 2022, 53, 1048-1067.	5 . 5	7
13	Orthonormal shifted discrete Legendre polynomials for the variable-order fractional extended Fisher–Kolmogorov equation. Chaos, Solitons and Fractals, 2022, 155, 111729.	5.1	8
14	A hybrid approach established upon the Müntzâ€Legender functions and 2D Müntzâ€Legender wavelets for fractional Sobolev equation. Mathematical Methods in the Applied Sciences, 2022, 45, 5304-5320.	2.3	7
15	SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: A meshless algorithm for the fractional diffusion equation. Engineering Analysis With Boundary Elements, 2022, 138, 108-117.	3.7	25
16	Thirdâ€kind Chebyshev cardinal functions for variableâ€order time fractional RLWâ€Burgers equation. Mathematical Methods in the Applied Sciences, 2022, 45, 5670-5681.	2.3	4
17	Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative. International Journal of Systems Science, 2022, 53, 2694-2708.	5.5	6
18	A hybrid wavelet-meshless method for variable-order fractional regularized long-wave equation. Engineering Analysis With Boundary Elements, 2022, 142, 61-70.	3.7	2

#	Article	IF	Citations
19	A direct computational method for nonlinear variableâ€order fractional delay optimal control problems. Asian Journal of Control, 2021, 23, 2709-2718.	3.0	7
20	Numerical study of the variable-order fractional version of the nonlinear fourth-order 2D diffusion-wave equation via 2D Chebyshev wavelets. Engineering With Computers, 2021, 37, 3319-3328.	6.1	15
21	New formulation of the orthonormal Bernoulli polynomials for solving the variable-order time fractional coupled Boussinesq–Burger's equations. Engineering With Computers, 2021, 37, 3509-3517.	6.1	17
22	An efficient wavelet-based approximation method for the coupled nonlinear fractal–fractional 2D Schrödinger equations. Engineering With Computers, 2021, 37, 2129.	6.1	11
23	Numerical solution of nonlinear fractalâ€fractional optimal control problems by Legendre polynomials. Mathematical Methods in the Applied Sciences, 2021, 44, 2952-2963.	2.3	17
24	Orthonormal Bernstein polynomials for solving nonlinear variableâ€order time fractional fourthâ€order diffusionâ€wave equation with nonsingular fractional derivative. Mathematical Methods in the Applied Sciences, 2021, 44, 3098-3110.	2.3	12
25	An efficient meshless method based on the moving Kriging interpolation for twoâ€dimensional variableâ€order time fractional mobile/immobile advectionâ€diffusion model. Mathematical Methods in the Applied Sciences, 2021, 44, 3182-3194.	2.3	12
26	Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations. Applied Numerical Mathematics, 2021, 161, 425-436.	2.1	26
27	A numerical method based on the Chebyshev cardinal functions for variableâ€order fractional version of the fourthâ€order 2D Kuramotoâ€Sivashinsky equation. Mathematical Methods in the Applied Sciences, 2021, 44, 1831-1842.	2.3	11
28	Chebyshev polynomials for generalized Couette flow of fractional Jeffrey nanofluid subjected to several thermochemical effects. Engineering With Computers, 2021, 37, 579-595.	6.1	39
29	A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel. Engineering With Computers, 2021, 37, 731-743.	6.1	14
30	Chebyshev polynomials for the numerical solution of fractal–fractional model of nonlinear Ginzburg–Landau equation. Engineering With Computers, 2021, 37, 1377-1388.	6.1	16
31	Shifted Vietaâ€Fibonacci polynomials for the fractalâ€fractional fifthâ€order KdV equation. Mathematical Methods in the Applied Sciences, 2021, 44, 6716-6730.	2.3	2
32	A wavelet method for nonlinear variable-order time fractional 2D Schr \tilde{A} ¶dinger equation. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 2273.	1.1	5
33	A numerical method for variableâ€order fractional version of the coupled 2D Burgers equations by the 2D Chelyshkov polynomials. Mathematical Methods in the Applied Sciences, 2021, 44, 6482-6499.	2.3	7
34	Principal component analysis to study the relations between the spread rates of COVID-19 in high risks countries. AEJ - Alexandria Engineering Journal, 2021, 60, 457-464.	6.4	104
35	Fibonacci polynomials for the numerical solution of variableâ€order spaceâ€time fractional Burgersâ€Huxley equation. Mathematical Methods in the Applied Sciences, 2021, 44, 6774-6786.	2.3	3
36	Orthonormal shifted discrete Chebyshev polynomials: Application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system. Chaos, Solitons and Fractals, 2021, 143, 110570.	5.1	9

#	Article	IF	Citations
37	Numerical investigation of variableâ€order fractional Benjamin–Bona–Mahony–Burgers equation using a pseudoâ€spectral method. Mathematical Methods in the Applied Sciences, 2021, 44, 8669-8683.	2.3	5
38	Shifted Jacobi polynomials for nonlinear singular variable-order time fractional Emden–Fowler equation generated by derivative with non-singular kernel. Advances in Difference Equations, 2021, 2021, .	3.5	3
39	Optimal control of hyperthermia thermal damage based on tumor configuration. Results in Physics, 2021, 23, 103992.	4.1	12
40	An accurate approach based on the orthonormal shifted discrete Legendre polynomials for variable-order fractional Sobolev equation. Advances in Difference Equations, 2021, 2021, .	3.5	10
41	A meshless technique based on the moving least squares shape functions for nonlinear fractal-fractional advection-diffusion equation. Engineering Analysis With Boundary Elements, 2021, 127, 8-17.	3.7	9
42	A hybrid method based on the orthogonal Bernoulli polynomials and radial basis functions for variable order fractional reaction-advection-diffusion equation. Engineering Analysis With Boundary Elements, 2021, 127, 18-28.	3.7	14
43	Vieta-Lucas polynomials for the coupled nonlinear variable-order fractional Ginzburg-Landau equations. Applied Numerical Mathematics, 2021, 165, 442-458.	2.1	11
44	An optimal variational iteration method for investigating the physical behavior of quasi-steady squeezing flow confined between parallel rigid walls. Physica Scripta, 2021, 96, 114012.	2.5	0
45	Piecewise Chebyshev cardinal functions: Application for constrained fractional optimal control problems. Chaos, Solitons and Fractals, 2021, 150, 111118.	5.1	21
46	A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative. Chaos, Solitons and Fractals, 2021, 152, 111465.	5.1	14
47	Discrete Chebyshev polynomials for nonsingular variableâ€order fractional KdV Burgers' equation. Mathematical Methods in the Applied Sciences, 2021, 44, 2158-2170.	2.3	11
48	Wavelets method for solving nonlinear stochastic ItÃ'â€"Volterra integral equations. Georgian Mathematical Journal, 2020, 27, 81-95.	0.6	9
49	A computational method for solving twoâ€dimensional nonlinear variableâ€order fractional optimal control problems. Asian Journal of Control, 2020, 22, 1112-1126.	3.0	18
50	Wilson wavelets method for solving nonlinear fractional Fredholm–Hammerstein integro-differential equations. International Journal of Computer Mathematics, 2020, 97, 2165-2177.	1.8	3
51	Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative. Chaos, Solitons and Fractals, 2020, 130, 109401.	5.1	40
52	Numerical solution of nonlinear 2D optimal control problems generated by Atangana-Riemann-Liouville fractal-fractional derivative. Applied Numerical Mathematics, 2020, 150, 507-518.	2.1	35
53	Goodness of fit test for almost cyclostationary processes. , 2020, 96, 102597.		29
54	Numerical treatment of the strongly coupled nonlinear fractal-fractional Schrödinger equations through the shifted Chebyshev cardinal functions. AEJ - Alexandria Engineering Journal, 2020, 59, 2037-2052.	6.4	25

#	Article	IF	CITATIONS
55	An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels. Chaos, Solitons and Fractals, 2020, 132, 109588.	5.1	20
56	Chebyshev cardinal functions for a new class of nonlinear optimal control problems with dynamical systems of weakly singular variable-order fractional integral equations. JVC/Journal of Vibration and Control, 2020, 26, 713-723.	2.6	5
57	A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations. Computational and Applied Mathematics, 2020, 39, 1.	2.2	14
58	A meshless approach for solving nonlinear variable-order time fractional 2D Ginzburg-Landau equation. Engineering Analysis With Boundary Elements, 2020, 120, 166-179.	3.7	13
59	Taylor's series expansion method for nonlinear variable-order fractional 2D optimal control problems. AEJ - Alexandria Engineering Journal, 2020, 59, 4737-4743.	6.4	5
60	Fuzzy clustering to classify several regression models with fractional Brownian motion errors. AEJ - Alexandria Engineering Journal, 2020, 59, 2811-2818.	6.4	12
61	Chebyshev wavelets operational matrices for solving nonlinear variable-order fractional integral equations. Advances in Difference Equations, 2020, 2020, .	3.5	8
62	Modeling and forecasting the spread and death rate of coronavirus (COVID-19) in the world using time series models. Chaos, Solitons and Fractals, 2020, 140, 110151.	5.1	57
63	A new variable-order fractional derivative with non-singular Mittag–Leffler kernel: application to variable-order fractional version of the 2D Richard equation. Engineering With Computers, 2020, , 1.	6.1	23
64	A Meshless Solution for the Variable-Order Time Fractional Nonlinear Kleinâ \in Gordon Equation. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	1.6	7
65	Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere. Results in Physics, 2020, 19, 103482.	4.1	20
66	A fractional viscoelastic model for vibrational analysis of thin plate excited by supports movement. Mechanics Research Communications, 2020, 110, 103618.	1.8	31
67	THE NUMERICAL TREATMENT OF NONLINEAR FRACTAL–FRACTIONAL 2D EMDEN–FOWLER EQUATION UTILIZING 2D CHELYSHKOV POLYNOMIALS. Fractals, 2020, 28, 2040042.	3.7	12
68	NUMERICAL TREATMENT OF THE SPACE–TIME FRACTAL–FRACTIONAL MODEL OF NONLINEAR ADVECTION–DIFFUSION–REACTION EQUATION THROUGH THE BERNSTEIN POLYNOMIALS. Fractals, 2020, 2040001.	8,3.7	18
69	An approximate approach for the generalized variable-order fractional pantograph equation. AEJ - Alexandria Engineering Journal, 2020, 59, 2347-2354.	6.4	14
70	A computational method for a class of systems of nonlinear variable-order fractional quadratic integral equations. Applied Numerical Mathematics, 2020, 153, 164-178.	2.1	11
71	Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense. Chaos, Solitons and Fractals, 2020, 134, 109695.	5.1	13
72	An operational matrix method for nonlinear variable-order time fractional reaction–diffusion equation involving Mittag-Leffler kernel. European Physical Journal Plus, 2020, 135, 1.	2.6	25

#	Article	IF	CITATIONS
73	A hybrid method for solving time fractional advection–diffusion equation on unbounded space domain. Advances in Difference Equations, 2020, 2020, .	3.5	8
74	Clustering of Infected Patients by COVID-19 Using Self-Organized Mapping and Extracting the Most Important Clinical Features. , 2020, , .		1
7 5	Second Kind Chebyshev Wavelets for Solving the Variable-Order Space-Time Fractional Telegraph Equation. , 2020, , 63-85.		0
76	Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel. Chaos, Solitons and Fractals, 2019, 127, 389-399.	5.1	41
77	Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel. Chaos, Solitons and Fractals, 2019, 127, 400-407.	5.1	37
78	Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernelsad. European Physical Journal Plus, 2019, 134, 1.	2.6	19
79	A direct method based on the Chebyshev polynomials for a new class of nonlinear variable-order fractional 2D optimal control problems. Journal of the Franklin Institute, 2019, 356, 8216-8236.	3.4	30
80	Numerical study of unsteady natural convection of variable-order fractional Jeffrey nanofluid over an oscillating plate in a porous medium involved with magnetic, chemical and heat absorption effects using Chebyshev cardinal functions. European Physical Journal Plus, 2019, 134, 1.	2.6	22
81	A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative. Chaos, Solitons and Fractals, 2019, 128, 339-348.	5.1	59
82	An efficient iterative approach for three-dimensional modified anomalous fractional sub-diffusion equations on a large domain. Advances in Difference Equations, 2019, 2019, .	3.5	3
83	A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation. Computers and Mathematics With Applications, 2019, 78, 3713-3730.	2.7	31
84	A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation. Journal of Computational Physics, 2019, 395, 1-18.	3.8	44
85	Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations. Applied Numerical Mathematics, 2019, 144, 190-203.	2.1	25
86	Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion. Chaos, Solitons and Fractals, 2019, 124, 105-124.	5.1	50
87	A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. Computer Methods in Applied Mechanics and Engineering, 2019, 350, 154-168.	6.6	42
88	A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Applied Mathematics and Computation, 2019, 352, 235-248.	2.2	51
89	A new method to compare the spectral densities of two independent periodically correlated time series. Mathematics and Computers in Simulation, 2019, 160, 103-110.	4.4	40
90	Testing the difference between spectral densities of two independent periodically correlated (cyclostationary) time series models. Communications in Statistics - Theory and Methods, 2019, 48, 2320-2328.	1.0	37

#	Article	IF	CITATIONS
91	A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Applied Mathematics and Computation, 2019, 341, 215-228.	2.2	57
92	A wavelet approach for the multi-term time fractional diffusion-wave equation. International Journal of Computer Mathematics, 2019, 96, 640-661.	1.8	24
93	A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 2018, 128, 1.	0.1	19
94	Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion. Communications in Nonlinear Science and Numerical Simulation, 2018, 64, 98-121.	3.3	64
95	An operational matrix method for solving variable-order fractional biharmonic equation. Computational and Applied Mathematics, 2018, 37, 4397-4411.	1.3	37
96	An Efficient Method for the Numerical Solution of a Class of Nonlinear Fractional Fredholm Integro-Differential Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19, 165-173.	1.0	7
97	Two reliable computational methods pertaining to steady state substrate concentration of an immobilized enzyme system. AEJ - Alexandria Engineering Journal, 2018, 57, 2377-2385.	6.4	2
98	A meshless method for solving the time fractional advection–diffusion equation with variable coefficients. Computers and Mathematics With Applications, 2018, 75, 122-133.	2.7	50
99	A new Wavelet Method for Variableâ€Order Fractional Optimal Control Problems. Asian Journal of Control, 2018, 20, 1804-1817.	3.0	64
100	Two-Dimensional Legendre Wavelets for Solving Variable-Order Fractional Nonlinear Advection-Diffusion Equation with Variable Coefficients. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19, 793-802.	1.0	34
101	A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions. European Physical Journal Plus, $2018,133,1.$	2.6	41
102	A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. Journal of the Franklin Institute, 2018, 355, 4970-4995.	3.4	60
103	Legendre wavelets optimization method for variable-order fractional Poisson equation. Chaos, Solitons and Fractals, 2018, 112, 180-190.	5.1	49
104	On the asymptotic distribution for the periodograms of almost periodically correlated (cyclostationary) processes., 2018, 81, 186-197.		36
105	An Optimization Wavelet Method for Multi Variable-order Fractional Differential Equations. Fundamenta Informaticae, 2017, 151, 255-273.	0.4	18
106	A New Optimization Method Based on Generalized Polynomials for Fractional Differential Equations. Fundamenta Informaticae, 2017, 151, 443-457.	0.4	2
107	A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. Journal of Computational Physics, 2017, 340, 655-669.	3.8	84
108	Moving Least Squares (MLS) Method for the Nonlinear Hyperbolic Telegraph Equation with Variable Coefficients. International Journal of Computational Methods, 2017, 14, 1750026.	1.3	10

#	Article	IF	CITATIONS
109	AN APPLICATION OF WILSON SYSTEM IN NUMERICAL SOLUTION OF FREDHOLM INTEGRAL EQUATIONS. Poincare Journal of Analysis and Applications, 2017, 04, 61-72.	0.2	1
110	Wavelets Galerkin Method for the Fractional Subdiffusion Equation. Journal of Computational and Nonlinear Dynamics, 2016, 11 , .	1.2	9
111	Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations. Nonlinear Dynamics, 2016, 85, 1185-1202.	5.2	40
112	Wavelets method for solving fractional optimal control problems. Applied Mathematics and Computation, 2016, 286, 139-154.	2.2	92
113	Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions. European Physical Journal Plus, 2016, 131, 1.	2.6	34
114	An efficient computational method based on the hat functions for solving fractional optimal control problems. Tbilisi Mathematical Journal, $2016, 9, .$	0.3	16
115	A new wavelet method for solving the Helmholtz equation with complex solution. Numerical Methods for Partial Differential Equations, 2016, 32, 741-756.	3.6	6
116	Wavelets Galerkin method for solving stochastic heat equation. International Journal of Computer Mathematics, 2016, 93, 1579-1596.	1.8	38
117	An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics. Journal of Computational Physics, 2015, 283, 148-168.	3.8	51
118	Wavelets method for the time fractional diffusion-wave equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 71-76.	2.1	91
119	A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type. Applied Mathematical Modelling, 2014, 38, 1597-1606.	4.2	79
120	An efficient computational method for solving fractional biharmonic equation. Computers and Mathematics With Applications, 2014, 68, 269-287.	2.7	35
121	A computational method for solving stochastic ItÃ'â€"Volterra integral equations based on stochastic operational matrix for generalized hat basis functions. Journal of Computational Physics, 2014, 270, 402-415.	3.8	75
122	Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Applied Mathematics and Computation, 2014, 234, 267-276.	2.2	105
123	Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 37-48.	3.3	105
124	Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation. Advances in Applied Mathematics and Mechanics, 2014, 6, 247-260.	1.2	40
125	Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Engineering Analysis With Boundary Elements, 2013, 37, 1331-1338.	3.7	70
126	Legendre Wavelets Method for Solving Fractional Population Growth Model in a Closed System. Mathematical Problems in Engineering, 2013, 2013, 1-8.	1.1	27

#	Article	IF	CITATIONS
127	Chebyshev Wavelets Method for Solution of Nonlinear Fractional Integrodifferential Equations in a Large Interval. Advances in Mathematical Physics, 2013, 2013, 1-12.	0.8	23
128	Wavelet Collocation Method for Solving Multiorder Fractional Differential Equations. Journal of Applied Mathematics, 2012, 2012, 1-19.	0.9	37
129	Reliable approach of iterative method for nonlinear fractional differential equations. International Journal of Physical Sciences, 2011, 6, .	0.4	O
130	Jacobi–Gauss–Lobatto collocation approach for non-singular variable-order time fractional generalized Kuramoto–Sivashinsky equation. Engineering With Computers, 0, , 1.	6.1	5
131	A hybrid method for variable-order fractional 2D optimal control problems on an unbounded domain. Engineering With Computers, 0, , 1.	6.1	1
132	A wavelet approach for the variable-order fractional model of ultra-short pulsed laser therapy. Engineering With Computers, 0 , 1 .	6.1	5
133	A reliable algorithm to determine the pollution transport within underground reservoirs: implementation of an efficient collocation meshless method based on the moving Kriging interpolation. Engineering With Computers, 0, , 1.	6.1	4
134	An efficient wavelet method for nonlinear problems arising in heat transfer. Engineering With Computers, 0 , 1 .	6.1	1
135	Orthonormal shifted discrete Hahn polynomials for a new category of nonlinear variableâ€order fractional 2D optimal control problems. Asian Journal of Control, 0, , .	3.0	2